339 research outputs found

    CNS Technology Website Administrative Guide (Version 1.0)

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

    Evaluation of dual flow thrust vector nozzles with exhaust stream impingement

    Get PDF
    To supplement previous work performed by NASA, a cold-jet facility was established at the California Polytechnic State University, San Luis Obispo campus. The purpose of this facility is to continue the studies of cold flow multiaxis thrust vectoring conducted at the NASA Langley Research Center. A single nozzle test apparatus was completed and is presently operational. Included are the results of the single flow test envelope that was requested by NASA personnel. Details about the test apparatus are included in the Cal Poly Semi-Annual Progress report

    An ALMA Constraint on the GSC 6214-210 B Circum-Substellar Accretion Disk Mass

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of GSC 6214-210 A and B, a solar-mass member of the 5-10 Myr Upper Scorpius association with a 15 ±\pm 2 Mjup companion orbiting at \approx330 AU (2.2"). Previous photometry and spectroscopy spanning 0.3-5 μ\mum revealed optical and thermal excess as well as strong Hα\alpha and Pa~β\beta emission originating from a circum-substellar accretion disk around GSC 6214-210 B, making it the lowest mass companion with unambiguous evidence of a subdisk. Despite ALMA's unprecedented sensitivity and angular resolution, neither component was detected in our 880 μ\mum (341 GHz) continuum observations down to a 3-σ\sigma limit of 0.22 mJy/beam. The corresponding constraints on the dust mass and total mass are <0.15 Mearth and <0.05 Mjup, respectively, or <0.003% and <0.3% of the mass of GSC 6214-210 B itself assuming a 100:1 gas-to-dust ratio and characteristic dust temperature of 10-20 K. If the host star possesses a putative circum-stellar disk then at most it is a meager 0.0015% of the primary mass, implying that giant planet formation has certainly ceased in this system. Considering these limits and its current accretion rate, GSC 6214-210 B appears to be at the end stages of assembly and is not expected to gain any appreciable mass over the next few Myr.Comment: Accepted to ApJ

    Design and evaluation of single and dual flow thrust vector nozzles with post exit vanes

    Get PDF
    This Thrust Vectored Research project required that a 1/24 scale model of the F/A-18 High Alpha Research Vehicle, (HARV), propulsion system be constructed on the university campus. This propulsion system was designed for cold flow testing on a multicomponent test rig. Forces and moments were measured to study nozzle performance parameters. The flow visualization technique of color Schlieren photography was performed to investigate the flow phenomena at the nozzle exit. The flow interactions that were identified consisted of vane nozzleing between the outer and lower vanes and vane tip interference. The thrust vectoring system consisted of three asymmetrically spaced vanes installed circumferentially on a maximum afterburner nozzle. The performance of the nozzle was investigated with the outer and lower vanes equally deflected, (-10 deg is less than delta(sub v) is less than 25 deg), and with the upper vane fully retracted, (delta(sub v) equals -10 deg). The nozzle pressure ratio ranged from 4 to 6. The results indicated that a vane nozzleing effect developed at nozzle pressure ratios of 4 and 6 when the outer and lower vanes were deflected far enough into the flow field such that the increase in vane area accelerated the flow past the vanes causing distorted shock waves. This accelerated flow was a result of a pressure differential existing between the inside surface of the vane and the ambient pressure. The stagnation pressure that developed along the inside surface of the vane accelerated the flow past the vanes causing it to equalize with ambient pressure, thus providing distorted shock waves. A tip interference was present at the trailing edge of the upper vane as a result of low nozzle pressure, NPR 4, with high vane deflection, delta(sub v) equals 25 degrees, and also with a high nozzle pressure, NPR 6, and low vane deflections, delta(sub v) equals 15 degrees

    First-Person Perspectives on Dual Diagnosis Anonymous (DDA): A Qualitative Study

    Get PDF
    Objective: People dually diagnosed with substance abuse and mental illnesses often feel alienated at traditional 12-step meetings, yet they need the peer support provided by such groups. Dual Diagnosis Anonymous (DDA) is a peer-support program specifically for people with co-occurring disorders, which addresses many of the factors that members find alienating about traditional 12-step groups. This study aimed to elicit first-person perspectives on DDA. Methods: Occupational therapy students conducted 13 focus groups with 106 DDA members in three settings: the community (6 groups, n = 36), correctional facilities (5 groups, n = 53), and the state psychiatric hospital (2 groups, n = 17). Researchers inductively analyzed focus group transcripts to identify prominent themes. Results: The vast majority of participants were between the ages of 18 and 49 (n = 87, 82.1%) and were non-Hispanic/White (n = 82, 77.4%). Most participants had been using substances for more than 10 years and had been diagnosed with a mental illness for more than 10 years. The most common substance of choice among those in the community and corrections setting was multiple substances, while those in the state hospital identified alcohol most often. Bipolar disorder was the most common mental illness diagnosis among participants in the state hospital, but depression and anxiety were the two most common diagnoses in the community and corrections participants. Four primary themes emerged from the qualitative analysis: (1) feeling accepted by others in the group, (2) acceptance within the group of mental illness and substance abuse together, (3) the structure of DDA meetings compared to other 12-step meetings, and (4) a focus on hope and recovery from both illnesses. Conclusions: DDA provides a helpful alternative for individuals who do not feel comfortable at traditional 12-step groups due to their mental illness. Members value the acceptance, understanding, discussion, and hope in DDA meetings

    Dust Evolution in Protoplanetary Disks

    Full text link
    (abridged) In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures are summarized. We discuss recent developments in the study of grain growth in molecular cloud cores and in collapsing envelopes of protostars as these provide the initial conditions for the dust in disks. We discuss the observational evidence for the growth of grains in young disks from mm surveys, as well as the recent evidence of radial variations of the dust properties in disks. We include a brief discussion of the constraints on the small end of the grain size distribution and on dust settling as derived from optical and IR observations. The observations are discussed in the context of global dust evolution models, in particular we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of grain sizes in disks. We also highlight the limits of current models, including the need to slow the radial drift of grains.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Protoplanetary Disk Masses in the Young NGC 2024 Cluster

    Get PDF
    We present the results from a Submillimeter Array survey of the 887 micron continuum emission from the protoplanetary disks around 95 young stars in the young cluster NGC 2024. Emission was detected from 22 infrared sources, with flux densities from ~5 to 330 mJy; upper limits (at 3sigma) for the other 73 sources range from 3 to 24 mJy. For standard assumptions, the corresponding disk masses range from ~0.003 to 0.2Msolar, with upper limits at 0.002--0.01Msolar. The NGC 2024 sample has a slightly more populated tail at the high end of its disk mass distribution compared to other clusters, but without more information on the nature of the sample hosts it remains unclear if this difference is statistically significant or a superficial selection effect. Unlike in the Orion Trapezium, there is no evidence for a disk mass dependence on the (projected) separation from the massive star IRS2b in the NGC 2024 cluster. We suggest that this is due to either the cluster youth or a comparatively weaker photoionizing radiation field.Comment: ApJ, in pres

    Pollination mechanisms and plant-pollinator relationships (2017)

    Get PDF
    Pollination is one of the most fascinating processes in the natural world. Pollination is how flowering plants reproduce. The process involves the transfer of pollen from the male parts to the female parts of the same or another plant. For some plants, this movement of pollen requires the action of another organism, a pollinator. Unfortunately, pollinator populations worldwide are in decline, which negatively affects the flowering plants that depend on them. It also means trouble for humans, as we all depend on the services of pollinators in many different ways, from the food we eat to the air we breathe. This decline in pollinator populations is due in part to human practices that have contributed to a loss of wild and flower-rich habitat. By changing some of our practices, such as how we manage flowering plants in our gardens and farms, we can help conserve these vital pollinator species
    corecore