126 research outputs found

    Lytic switch protein (ORF50) response element in the Kaposi’s sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure

    Get PDF
    Kaposi's sarcoma-associated virus (KSHV) ORF50 protein induces lytic replication and activates the K8 promoter. We show that ORF50-induced and tetradecanoyl phorbol acetate (TPA) induced K8 transcripts initiated from the same start site. A newly identified palindrome (PAL2), containing a 12-bp response region required for ORF50-induced activation in lymphoid cells, was identified in the K8 promoter. Specific DNA binding of bacterially expressed ORF50 was not seen with the K8 promoter despite specific binding to the PAN promoter. The new palindrome shared homology with a previously described ORF50 response element (50RE(K8) and 50RE(57)). We demonstrate that the new 50RE(K8) (50RE(K8-PAL2)) is not the palindrome per se. Instead, the response element is buried within the right arm of the palindrome. We propose that the complexity of the K8 response elements reflects the complexity of mechanisms used by ORF50 during viral reactivation

    Gene Expression from the ORF50/K8 Region of Kaposi's Sarcoma-Associated Herpesvirus

    Get PDF
    The ORF50 gene of Kaposi's sarcoma (KS)-associated herpesvirus, or human herpesvirus 8 (KSHV), activates viral replication and is weakly homologous to the herpesvirus family of R transactivators; therefore, the transcription and translation events from this region of KSHV are key events in viral reactivation. We demonstrate that ORF50 is expressed in a bicistronic message after induction of the viral lytic cycle. ORF50 migrated as a series of polypeptides: the major ones as 119 and 101 kDa, respectively. Using 3' rapid amplification of cDNA ends, RT-PCR, and cDNA library screening, we demonstrate that the major ORF50 transcript also encodes K8. The ORF50/K8 transcript was resistant to cyclohexamide, whereas the K8 transcript was only partially resistant to cyclohexamide at early timepoints. Both transcripts showed partial resistance after 12 h of phorbol ester induction. Using a GAL4-ORF50 fusion protein expression vector, we demonstrate that the transactivation domain of ORF50 resides within a 160-amino-acid region of the carboxyl portion of the ORF. Upstream regions of both ORF50 and K8 have basal promoter activity in KSHV-infected cells. K8, which had sequence homology to Bzip proteins, did not activate either promoter. However, both promoters were activated after cotransfection of ORF50 in BCBL-1 cells

    Activating Ly-49d and Inhibitory Ly-49a Natural Killer Cell Receptors Demonstrate Distinct Requirements for Interaction with H2-Dd

    Get PDF
    The activating Ly-49D receptor and the inhibitory Ly-49A receptor mediate opposing effects on natural killer (NK) cell cytotoxicity after interaction with the same major histocompatibility complex ligand, H2-Dd. To compare Ly-49D and Ly-49A interactions with H2-Dd, we created mutations in H2-Dd and examined the functional ability of these mutants to activate lysis through Ly-49D or to inhibit lysis through Ly-49A. Specific single amino acid changes in either the H2-Dd α1 helix or the α2 helix abrogated Ly-49D–mediated cytotoxicity, but these changes had no significant effect on Ly-49A–dependent inhibition. Each of three α2 domain mutations in the floor of the peptide binding groove reduced functional recognition by either Ly-49D or Ly-49A, but all three were required to fully abrogate inhibition by Ly-49A. Our studies indicate that Ly-49D/H2-Dd interactions require distinct determinants compared with Ly-49A/H2-Dd interactions. These differences have important implications for the integration of activating and inhibitory signals in NK cells

    Mouse Ly-49D Recognizes H-2Dd and Activates Natural Killer Cell Cytotoxicity

    Get PDF
    Although activation of natural killer (NK) cytotoxicity is generally inhibited by target major histocompatibility complex (MHC) class I expression, subtle features of NK allorecognition suggest that NK cells possess receptors that are activated by target MHC I. The mouse Ly-49D receptor has been shown to activate NK cytotoxicity, although recognition of MHC class I has not been demonstrated previously. To define Ly-49D–ligand interactions, we transfected the mouse Ly-49D receptor into the rat NK line, RNK-16 (RNK.mLy-49D). As expected, anti– Ly-49D monoclonal antibody 12A8 specifically stimulated redirected lysis of the Fc receptor– bearing rat target YB2/0 by RNK.mLy-49D transfectants. RNK.mLy-49D effectors were tested against YB2/0 targets transfected with the mouse MHC I alleles H-2Dd, Db, Kk, or Kb. RNK.mLy-49D cells lysed YB2/0.Dd targets more efficiently than untransfected YB2/0 or YB2/0 transfected with Db, Kk, or Kb. This augmented lysis of H-2Dd targets was specifically inhibited by F(ab′)2 anti–Ly-49D (12A8) and F(ab′)2 anti–H-2Dd (34-5-8S). RNK.mLy-49D effectors were also able to specifically lyse Concanavalin A blasts isolated from H-2d mice (BALB/c, B10.D2, and DBA/2) but not from H-2b or H-2k mice. These experiments show that the activating receptor Ly-49D specifically interacts with the MHC I antigen, H-2Dd, demonstrating the existence of alloactivating receptors on murine NK cells

    Synergistic Ca^(2+) Responses by Gα_i- and Gα_q-coupled G-protein-coupled Receptors Require a Single PLCβ Isoform That Is Sensitive to Both Gβ_γ and Gα_q

    Get PDF
    Cross-talk between Gα_i- and Gα_q-linked G-protein-coupled receptors yields synergistic Ca^(2+) responses in a variety of cell types. Prior studies have shown that synergistic Ca^(2+) responses from macrophage G-protein-coupled receptors are primarily dependent on phospholipase Cβ3 (PLCβ3), with a possible contribution of PLCβ2, whereas signaling through PLCβ4 interferes with synergy. We here show that synergy can be induced by the combination of Gβγ and Gαq activation of a single PLCβ isoform. Synergy was absent in macrophages lacking both PLCβ2 and PLCβ3, but it was fully reconstituted following transduction with PLCβ3 alone. Mechanisms of PLCβ-mediated synergy were further explored in NIH-3T3 cells, which express little if any PLCβ2. RNAi-mediated knockdown of endogenous PLCβs demonstrated that synergy in these cells was dependent on PLCβ3, but PLCβ1 and PLCβ4 did not contribute, and overexpression of either isoform inhibited Ca^(2+) synergy. When synergy was blocked by RNAi of endogenous PLCβ3, it could be reconstituted by expression of either human PLCβ3 or mouse PLCβ2. In contrast, it could not be reconstituted by human PLCβ3 with a mutation of the Y box, which disrupted activation by Gβγ, and it was only partially restored by human PLCβ3 with a mutation of the C terminus, which partly disrupted activation by Gα_q. Thus, both Gβγ and Gα_q contribute to activation of PLCβ3 in cells for Ca^(2+) synergy. We conclude that Ca^(2+) synergy between Gα_i-coupled and Gα_q-coupled receptors requires the direct action of both Gβγ and Gαq on PLCβ and is mediated primarily by PLCβ3, although PLCβ2 is also competent

    TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis

    Get PDF
    T cell immunoglobulin-domain and mucin-domain (TIM) proteins constitute a receptor family that was identified first on kidney and liver cells; recently it was also shown to be expressed on T cells. TIM-1 and -3 receptors denote different subsets of T cells and have distinct regulatory effects on T cell function. Ferritin is a spherical protein complex that is formed by 24 subunits of H- and L-ferritin. Ferritin stores iron atoms intracellularly, but it also circulates. H-ferritin, but not L-ferritin, shows saturable binding to subsets of human T and B cells, and its expression is increased in response to inflammation. We demonstrate that mouse TIM-2 is expressed on all splenic B cells, with increased levels on germinal center B cells. TIM-2 also is expressed in the liver, especially in bile duct epithelial cells, and in renal tubule cells. We further demonstrate that TIM-2 is a receptor for H-ferritin, but not for L-ferritin, and expression of TIM-2 permits the cellular uptake of H-ferritin into endosomes. This is the first identification of a receptor for ferritin and reveals a new role for TIM-2

    Binding and uptake of H-ferritin are mediated by human transferrin receptor-1

    Get PDF
    Ferritin is a spherical molecule composed of 24 subunits of two types, ferritin H chain (FHC) and ferritin L chain (FLC). Ferritin stores iron within cells, but it also circulates and binds specifically and saturably to a variety of cell types. For most cell types, this binding can be mediated by ferritin composed only of FHC (HFt) but not by ferritin composed only of FLC (LFt), indicating that binding of ferritin to cells is mediated by FHC but not FLC. By using expression cloning, we identified human transferrin receptor-1 (TfR1) as an important receptor for HFt with little or no binding to LFt. In vitro, HFt can be precipitated by soluble TfR1, showing that this interaction is not dependent on other proteins. Binding of HFt to TfR1 is partially inhibited by diferric transferrin, but it is hindered little, if at all, by HFE. After binding of HFt to TfR1 on the cell surface, HFt enters both endosomes and lysosomes. TfR1 accounts for most, if not all, of the binding of HFt to mitogen-activated T and B cells, circulating reticulocytes, and all cell lines that we have studied. The demonstration that TfR1 can bind HFt as well as Tf raises the possibility that this dual receptor function may coordinate the processing and use of iron by these iron-binding molecules

    Signaling and crosstalk by C5a and UDP in macrophages selectively use PLCbeta 3 to regulate intracellular free calcium

    Get PDF
    Studies in fibroblasts, neurons, and platelets have demonstrated the integration of signals from different G-protein coupled receptors (GPCRs) in raising intracellular free Ca2+. To study signal integration in macrophages, we screened RAW264.7 cells and bone marrow-derived macrophages (BMDM) for their Ca2+ response to GPCR ligands. We found a synergistic response to complement component 5a (C5a) in combination with uridine 5’-diphosphate (UDP), platelet activating factor (PAF) or lysophosphatidic acid (LPA). The C5a response was Gai-dependent, while the UDP, PAF, and LPA responses were Gaqdependent. Synergy between C5a and UDP, mediated by the C5a and P2Y6 receptors, required dual receptor occupancy, and affected the initial release of Ca2+ from intracellular stores as well as sustained Ca2+ levels. C5a and UDP synergized in generating inositol-1,4,5-trisphosphate, suggesting synergy in activating phospholipase C (PLC) ß. Macrophages expressed transcripts for three PLCß isoforms (PLCß2, PLCß3, and PLCß4), but GPCR ligands selectively used these isoforms in Ca2+ signaling. C5a predominantly used PLCß3, while UDP used PLCß3 but also PLCß4. Neither ligand required PLCß2. Synergy between C5a and UDP likewise depended primarily on PLCß3. Importantly, the Ca2+ signaling deficiency observed in PLCß3-deficient BMDM was reversed by reconstitution with PLCß3. Neither PI-3 kinase nor PKC was required for synergy. In contrast to Ca2+, PI3-kinase activation by C5a was inhibited by UDP, as was macropinocytosis, which depends on PI3- kinase. PLCß3 may thus provide a selective target for inhibiting Ca2+ responses to mediators of inflammation, including C5a, UDP, PAF, and LPA
    corecore