103 research outputs found

    Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness.

    Get PDF
    We propose semi-parametric methods to model cohort data where repeated outcomes may be missing due to death and non-ignorable dropout. Our focus is to obtain inference about the cohort composed of those who are still alive at any time point (partly conditional inference). We propose: i) an inverse probability weighted method that upweights observed subjects to represent subjects who are still alive but are not observed; ii) an outcome regression method that replaces missing outcomes of subjects who are alive with their conditional mean outcomes given past observed data; and iii) an augmented inverse probability method that combines the previous two methods and is double robust against model misspecification. These methods are described for both monotone and non-monotone missing data patterns, and are applied to a cohort of elderly adults from the Health and Retirement Study. Sensitivity analysis to departures from the assumption that missingness at some visit t is independent of the outcome at visit t given past observed data and time of death is used in the data application

    Handling missing data in matched case-control studies using multiple imputation.

    Get PDF
    Analysis of matched case-control studies is often complicated by missing data on covariates. Analysis can be restricted to individuals with complete data, but this is inefficient and may be biased. Multiple imputation (MI) is an efficient and flexible alternative. We describe two MI approaches. The first uses a model for the data on an individual and includes matching variables; the second uses a model for the data on a whole matched set and avoids the need to model the matching variables. Within each approach, we consider three methods: full-conditional specification (FCS), joint model MI using a normal model, and joint model MI using a latent normal model. We show that FCS MI is asymptotically equivalent to joint model MI using a restricted general location model that is compatible with the conditional logistic regression analysis model. The normal and latent normal imputation models are not compatible with this analysis model. All methods allow for multiple partially-observed covariates, non-monotone missingness, and multiple controls per case. They can be easily applied in standard statistical software and valid variance estimates obtained using Rubin's Rules. We compare the methods in a simulation study. The approach of including the matching variables is most efficient. Within each approach, the FCS MI method generally yields the least-biased odds ratio estimates, but normal or latent normal joint model MI is sometimes more efficient. All methods have good confidence interval coverage. Data on colorectal cancer and fibre intake from the EPIC-Norfolk study are used to illustrate the methods, in particular showing how efficiency is gained relative to just using individuals with complete data

    Review of methods for handling confounding by cluster and informative cluster size in clustered data.

    Get PDF
    Clustered data are common in medical research. Typically, one is interested in a regression model for the association between an outcome and covariates. Two complications that can arise when analysing clustered data are informative cluster size (ICS) and confounding by cluster (CBC). ICS and CBC mean that the outcome of a member given its covariates is associated with, respectively, the number of members in the cluster and the covariate values of other members in the cluster. Standard generalised linear mixed models for cluster-specific inference and standard generalised estimating equations for population-average inference assume, in general, the absence of ICS and CBC. Modifications of these approaches have been proposed to account for CBC or ICS. This article is a review of these methods. We express their assumptions in a common format, thus providing greater clarity about the assumptions that methods proposed for handling CBC make about ICS and vice versa, and about when different methods can be used in practice. We report relative efficiencies of methods where available, describe how methods are related, identify a previously unreported equivalence between two key methods, and propose some simple additional methods. Unnecessarily using a method that allows for ICS/CBC has an efficiency cost when ICS and CBC are absent. We review tools for identifying ICS/CBC. A strategy for analysis when CBC and ICS are suspected is demonstrated by examining the association between socio-economic deprivation and preterm neonatal death in Scotland

    Simulating data from marginal structural models for a survival time outcome

    Full text link
    Marginal structural models (MSMs) are often used to estimate causal effects of treatments on survival time outcomes from observational data when time-dependent confounding may be present. They can be fitted using, e.g., inverse probability of treatment weighting (IPTW). It is important to evaluate the performance of statistical methods in different scenarios, and simulation studies are a key tool for such evaluations. In such simulation studies, it is common to generate data in such a way that the model of interest is correctly specified, but this is not always straightforward when the model of interest is for potential outcomes, as is an MSM. Methods have been proposed for simulating from MSMs for a survival outcome, but these methods impose restrictions on the data-generating mechanism. Here we propose a method that overcomes these restrictions. The MSM can be a marginal structural logistic model for a discrete survival time or a Cox or additive hazards MSM for a continuous survival time. The hazard of the potential survival time can be conditional on baseline covariates, and the treatment variable can be discrete or continuous. We illustrate the use of the proposed simulation algorithm by carrying out a brief simulation study. This study compares the coverage of confidence intervals calculated in two different ways for causal effect estimates obtained by fitting an MSM via IPTW.Comment: 29 pages, 2 figure

    Methods for handling longitudinal outcome processes truncated by dropout and death.

    Get PDF
    Cohort data are often incomplete because some subjects drop out of the study, and inverse probability weighting (IPW), multiple imputation (MI), and linear increments (LI) are methods that deal with such missing data. In cohort studies of ageing, missing data can arise from dropout or death. Methods that do not distinguish between these reasons for missingness typically provide inference about a hypothetical cohort where no one can die (immortal cohort). It has been suggested that inference about the cohort composed of those who are still alive at any time point (partly conditional inference) may be more meaningful. MI, LI, and IPW can all be adapted to provide partly conditional inference. In this article, we clarify and compare the assumptions required by these MI, LI, and IPW methods for partly conditional inference on continuous outcomes. We also propose augmented IPW estimators for making partly conditional inference. These are more efficient than IPW estimators and more robust to model misspecification. Our simulation studies show that the methods give approximately unbiased estimates of partly conditional estimands when their assumptions are met, but may be biased otherwise. We illustrate the application of the missing data methods using data from the 'Origins of Variance in the Old-old' Twin study

    Methods for observed-cluster inference when cluster size is informative: a review and clarifications.

    Get PDF
    Clustered data commonly arise in epidemiology. We assume each cluster member has an outcome Y and covariates X. When there are missing data in Y, the distribution of Y given X in all cluster members ("complete clusters") may be different from the distribution just in members with observed Y ("observed clusters"). Often the former is of interest, but when data are missing because in a fundamental sense Y does not exist (e.g., quality of life for a person who has died), the latter may be more meaningful (quality of life conditional on being alive). Weighted and doubly weighted generalized estimating equations and shared random-effects models have been proposed for observed-cluster inference when cluster size is informative, that is, the distribution of Y given X in observed clusters depends on observed cluster size. We show these methods can be seen as actually giving inference for complete clusters and may not also give observed-cluster inference. This is true even if observed clusters are complete in themselves rather than being the observed part of larger complete clusters: here methods may describe imaginary complete clusters rather than the observed clusters. We show under which conditions shared random-effects models proposed for observed-cluster inference do actually describe members with observed Y. A psoriatic arthritis dataset is used to illustrate the danger of misinterpreting estimates from shared random-effects models.SRS is funded by MRC grants U1052 60558 and MC_US_A030_0015, AJC and MP by MRC grant G0600657
    • …
    corecore