
Biometrics DOI: 10.1111/biom.12891

Semi-Parametric Methods of Handling Missing Data in Mortal
Cohorts under Non-Ignorable Missingness

Lan Wen * and Shaun R. Seaman

MRC Biostatistics Unit, University of Cambridge, IPH Forvie Site, Robinson Way, Cambridge CB2 0SR, U.K.
∗email: lw499@cam.ac.uk

Summary. We propose semi-parametric methods to model cohort data where repeated outcomes may be missing due to
death and non-ignorable dropout. Our focus is to obtain inference about the cohort composed of those who are still alive at
any time point (partly conditional inference). We propose: i) an inverse probability weighted method that upweights observed
subjects to represent subjects who are still alive but are not observed; ii) an outcome regression method that replaces missing
outcomes of subjects who are alive with their conditional mean outcomes given past observed data; and iii) an augmented
inverse probability method that combines the previous two methods and is double robust against model misspecification.
These methods are described for both monotone and non-monotone missing data patterns, and are applied to a cohort of
elderly adults from the Health and Retirement Study. Sensitivity analysis to departures from the assumption that missingness
at some visit t is independent of the outcome at visit t given past observed data and time of death is used in the data
application.
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1. Introduction

In studies of the elderly, deaths occur frequently during follow-
up and in most cases, truncate the outcome process. Several
authors (e.g., Dufouil et al., 2004; Kurland et al., 2009;
Seaman et al., 2016) have stressed the importance of distin-
guishing between outcomes that are missing due to dropout
and those that are missing due to death. Otherwise we might
find ourselves unintentionally defining post-death outcomes,
which may be philosophically problematic. Some statistical
methods do not make this distinction (e.g., linear mixed-
effects models, LMM), and consequently estimate the mean
or distribution of an outcome in the whole cohort, including
subjects who are no longer alive. In doing so, these methods
explicitly or implicitly impute post-death outcomes, as though
the outcome process continued after death. Such methods
are said to produce “immortal cohort inference” or “uncondi-
tional inference” (Dufouil et al., 2004). In contrast, methods
that distinguish between dropout and death, and estimate the
mean or distribution of the outcomes in the subjects who are
alive provide “mortal cohort inference.”

Two forms of mortal cohort inference are “partly
conditional inference” and inference about the average effect
of an exposure on an outcome in the subpopulation who
would survive regardless of their exposure status. The lat-
ter is known as the “survivor average causal effect” (SACE).
In this article, we focus on partly conditional inference; the
SACE is discussed in Web Appendix A. Partly conditional
inference concerns the partly conditional mean, that is, the
mean outcome (possibly conditional on covariates) at each
time point in the subpopulation who are still alive at that time
point. Estimating this mean for an outcome that is related to

health-care need and how this mean depends on covariates
can be useful for, for example, planning allocation of health-
care resources, since it is this subpopulation who must be
provided for.

The partly conditional mean can be estimated using Gen-
eralized Estimating Equations with an independence working
correlation structure (IEE). IEE are valid if the missingness
at a time point among those who are alive at that time point
depends only on observed covariates. Kurland and Heagerty
(2005) weaken this assumption by using inverse probability
weighting (IPW) to weight observed outcomes by the inverse
probability of observation among the subjects who are alive,
given observed outcomes and covariates.

We are motivated by the Health and Retirement Study
(HRS): a survey of adults 50 years or older in the United
States. Data are collected every 2 years on aspects of life such
as health, physical, and cognitive functioning, work, etc. In
this article, we focus on data collected from 2004 (baseline)
to 2012 and on adults 80 years or older at baseline. We aim to
describe the average cognitive score of the subjects who are
alive at each visit and to understand the factors associated
with these subjects’ cognitive score while they were alive. One
measure of cognitive function is total cognition score, which
is the sum of total word recall and mental status summary
scores, and has range 0–35.

Most statistical methods for missing data in cohort stud-
ies assume missing at random (MAR). The MAR assumption
states that, conditional on observed data, missingness does
not depend on the unobserved data (Seaman et al., 2013).
However, Rotnitzky et al. (1998) and Scharfstein et al.
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(1999) (henceforth RRS) described semi-parametric meth-
ods for non-ignorable missing data, where missingness can
depend on unobserved data. These articles deal with estimat-
ing the mean of a repeated outcome (possibly as a function
of covariates) for monotone missing data, and rely on a
selection bias function that quantifies the residual associ-
ation between an outcome at a visit and the probability
of observing this outcome after accounting for past out-
comes and covariates. The parameter of this selection bias
function is known as a sensitivity parameter. Vansteelandt
et al. (2007) (henceforth VRR) proposed a class of semi-
parametric models to handle non-monotone, non-ignorable
missing data. Their (double-robust) method provides an esti-
mator that is consistent and asymptotically normal when
either a model for the probability of non-response given cur-
rent outcome, past observed outcomes and covariates, or
a model for the conditional mean of the missing outcome
given past observed outcomes and covariates (or both) is
correctly specified.

In a joint model for the outcomes and dropout, the sen-
sitivity parameter can be estimated, but this estimate can
be severely biased when the outcome submodel is misspeci-
fied (Robins and Rotnitzky, 1997). For this reason, RRS and
VRR recommend assessing the effect on the estimate of inter-
est by varying the selection bias function and/or sensitivity
parameter.

RRS and VRR do not distinguish between death and other
types of missingness. Wen et al. (2017) make this distinction
and describe the assumptions of IPW for partly conditional
inference, but only for monotone ignorably missing data. In
this article, we adapt RRS and VRR’s methods to make partly
conditional inference from monotone or non-monotone non-
ignorably missing data caused by death, dropout and possibly
return after dropout. In Section 2, we provide details about
the motivating example. In Section 3, we define the assump-
tions for monotone missing data and describe our methods
to make partly conditional inference. In Section 4, we define
the assumptions for non-monotone missing data and adapt
the semi-parametric methods from VRR to make partly con-
ditional inference. In Section 5, we provide simulation studies
to compare bias, efficiency, and coverage of the methods
described in this article. In Section 6, we apply these meth-
ods to data from the HRS ageing study. All proofs are in the
Web Appendix.

2. Motivation

Suppose there are n subjects in the study and J planned visits
for each subject. Let Di be the last scheduled visit before sub-
ject i dies, and Ait be his vital status at visit t (t = 1, . . . , J).
Note that Ait = 1 if and only if Di ≥ t, and that Di = J if
subject i is still alive at the end of the study. Let Yit be
the outcome at visit t, Zi be a vector of fully observed base-
line covariates of interest, and Xi0 be a vector that includes
Zi and possibly other fully observed time-independent auxil-
iary variables. Let Xit (t = 1, . . . , J) be a vector of auxiliary
variables measured at time t (Xit can be empty). The auxil-
iary variables are variables that are not of direct interest but
may be predictive of missingness or missing outcomes. Let Rit

denote the response indicator (Rit = 1 if Yit is observed, Rit = 0

otherwise), and let Rit = (Ri1, . . . , Rit)
T . We define Ai0 = 1 and

Yi0 = ∅. Henceforth, we omit subscripts i unless needed.
Our objective is to estimate the parameter β of a model

for the mean outcome at each visit (possibly) given base-
line covariates Z in those who are still alive at that visit:
μt = μt(Z) = E(Yt | Z, At = 1). In the HRS data analysis, we
consider the model

μt = β0 + βtyeart + βt2year2t + βageage + βsexsex + βeduedu

+ βtageyeart · age + βtsexyeart · sex + βteduyeart · edu (1)

for the dependence of the expected cognitive function (Yt)
at visit t on time (years from baseline, denoted yeart), age
at recruitment, sex (sex = 1 if female), years of education,
and the interactions between time and age, sex, and educa-
tion. Table 1 shows the results of applying LMM and IEE
to the observed data. Since unhealthier subjects (those with
lower, that is, worse cognitive function) are more likely to
miss a visit than healthier subjects, the estimates from IEE
are based on subjects who are healthier than average. On
the other hand, the estimates from LMM are based on all
subjects, and all the missing cognitive scores are implic-
itly imputed. If subjects are still alive, these imputed scores
tend to be lower on average than in subjects who have not
dropped out, otherwise they correspond to post-death out-
comes. Hence, estimates from LMM suggest that the mean
cognitive function declines more rapidly than do the estimates
from IEE. However, LMM does not distinguish between death
and other reasons for missingness, and IEE rely on strong
assumptions about the missingness process. In the next two
sections, we discuss methods that require weaker assump-
tions. Further results from this HRS example can be found
in Section 6.

3. Non-Ignorable Monotone Missing Data in a
Mortal Cohort

Under a monotone missing data pattern, when an outcome
is missing at some visit s then all subsequent outcomes will
also be missing (i.e., Rt ≤ Rs, for 1 ≤ s < t ≤ J). This type of
missingness pattern occurs in cohort studies where subjects
drop out but never return. Throughout this section, we let
Ot = (X0, X1, . . . , Xt, Y1, . . . , Yt) (t = 1, . . . , J), let O0 = X0,

Table 1
Analysis of HRS data using IEE and LMM

IEE LMM

Param. Estimate SE p-value Estimate SE p-value

Int 11.959 0.521 0.00 12.078 0.493 0.00
t −0.050 0.135 0.71 −0.261 0.112 0.02
t2 −0.018 0.008 0.02 −0.041 0.006 0.00
Age −0.312 0.025 0.00 −0.312 0.024 0.00
Sex 0.034 0.198 0.86 0.059 0.199 0.77
Edu 0.696 0.030 0.00 0.678 0.028 0.00
t·age −0.011 0.008 0.14 −0.036 0.006 0.00
t·sex 0.006 0.049 0.90 −0.069 0.042 0.09
t·edu −0.014 0.007 0.05 0.003 0.006 0.56
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and assume the following (“Assumption 1”) holds:

P(Rt =1 | Rt−1 =1, Ot−1, Yt, At =1) > 0, ∀t with probability 1

We define “mortal-cohort non-future dependence
(NFD)” as

P(Rt = 0 | Rt−1 = 1, Ot−1, Yt, . . . , YD, D) =
P(Rt = 0 | Rt−1 = 1, Ot−1, Yt, At = 1), ∀t ≤ D

Mortal-cohort NFD says that the probability of dropout
at visit t, conditional on survival to visit t, can depend on
past outcomes and the outcome at visit t but not on future
outcomes or D. In ageing studies, it is not unlikely that
someone’s mental state at a given time could affect their
ability to participate in the study at that time. The rest of
this section describes methods that yield consistent estimates
under mortal-cohort NFD. The first method weights up out-
comes from observed subjects to represent subjects who are
still alive but have dropped out (IPW), the second method
imputes pre-death missing outcomes (conditional mean out-
come regression, CMOR), and the third method combines
these two methods to offer double protection against model
misspecification (Augmented IPW, AIPW).

3.1. Inverse Probability Weighting

Dufouil et al. (2004) first used IPW to make partly conditional
inference for monotone missing data under non-ignorable
dropout but did not describe the assumptions underlying
their method. Below we clearly state the assumptions and
the IPW estimating equations for making partly conditional
inference. Let πt(Ot−1, Yt ;αt, γ) be a model for πt(Ot−1, Yt) =
P(Rt = 1 | Rt−1 = 1, Ot−1, Yt, At = 1) (t = 1, . . . J) with finite-
dimensional parameters, αt and γ. For example, we could
assume

1 − πt(Ot−1, Yt ;αt, γ) = expit(α0t + α1tYt−1 + α2tX + γYt) (2)

More generally, we assume the missingness model can be
written as

1 − πt(Ot−1, Yt ;αt, γ) = expit{ht(Ot−1;αt) + qt(Ot−1, Yt ; γ)}
(3)

where qt(Ot−1, Yt ; γ) is a known selection bias function with
parameter γ specified a priori, ht(Ot−1;αt) is a known function
with unknown parameter αt , and expit(a) = {1 + exp(−a)}−1.
The function qt(Ot−1, Yt ; γ) describes the residual effect of the
outcome at visit t on the probability of observing that out-
come after adjusting for the observed data and missingness
pattern up to visit t − 1. Note that if qt(Ot−1, Yt ; γ) = 0, there
is no residual dependence of the outcome at visit t on dropout.
For monotone missing data this special case is referred to as
unconditional-MAR in Wen et al. (2017), and details about
its relationship with mortal cohort NFD can be found in Web
Appendix H.

Let α̂t be the estimator of αt that solves

n∑
i=1

Qit(αt) =
n∑

i=1

φt(Oi,t−1)AitRi,t−1

πt(Oi,t−1, Yit ;αt, γ)

×{
Rit − πt(Oi,t−1, Yit ;αt, γ)

} = 0, ∀t

where φt(Ot−1) is a function of Ot−1 that has the same dimen-
sion as αt . For example, for model (2), φt(Ot−1) could be
(1, Yt−1, X)T . If mortal-cohort NFD holds, the selection bias
function and the sensitivity parameter γ are correctly chosen,
and the missingness models are correctly specified, then α̂t

will be consistent.
Let α = (α1, . . . , αJ) and α̂ = (α̂1, . . . , α̂J). The parameter

β in the model of interest can be estimated by solving the
following set of estimating equations:

n∑
i=1

J∑
t=1

(
∂μit

∂β

)
AitRit(Yit − μit)

λt(Oi,t−1, Yit ; α̂, γ)
= 0 (4)

where λt(Ot−1, Yt ; α̂, γ) = ∏t

l=1
πl(Ol−1, Yl; α̂l, γ). If mortal-

cohort NFD holds, the selection bias function and the
sensitivity parameter γ are correctly chosen, and the miss-
ingness models are correctly specified, then the estimator β̂

that solves estimating equations (4) will be consistent.

3.2. Conditional Mean Outcome Regression

Here, we briefly outline the CMOR method; full details are in
Web Appendix C.

Provided that Assumption 1 holds, equation (3) implies
the following relation between the expected outcome (given
history Ot−1) at visit t in survivors who drop out just before
visit t and in survivors who are observed at visit t.

E(Yt | Ot−1, Rt−1 = 1, Rt = 0, At = 1)

= E[Yt exp{qt(Ot−1, Yt)} | Ot−1, Rt = 1, At = 1]

E[exp{qt(Ot−1, Yt)} | Ot−1, Rt = 1, At = 1]
(5)

In particular, if qt(Ot−1, Yt ; γ) = 0, then conditional on Ot−1

and survival at visit t, subjects who drop out just before visit
t have the same mean outcome at visit t as those who are
observed at visit t. If qt(Ot−1, Yt ; γ) is an increasing (decreas-
ing) function of Yt , then subjects who drop out just before
visit t tend to have larger (smaller) Yt than those who are
observed.

In the CMOR approach, the missing values of Yt in those
who are alive at visit t but drop out just before visit t are
imputed as E(Yt | Ot−1, Rt−1 = 1, Rt = 0, At = 1). Since this
expectation is unknown, a model mt(Ot−1; θt,t−1), with param-
eters θt,t−1, is specified for it (t = 1, . . . , J). By exploiting
equation (5), θt,t−1 can be estimated from the outcomes on
subjects who are observed at visit t.

Next, provided Assumption 1 is true and mortal-cohort
NFD holds, it can be shown that the mean outcome at visit
t in survivors who drop out just before visit t − 1 is related
to the mean outcome in survivors who are observed at visit
t − 1 by:
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E(Yt | Ot−2, Rt−2 = 1, Rt−1 = 0, At = 1)

= EYt−1

[
E(Yt | Ot−2, Yt−1, Rt−1 = 1, At = 1) exp{qt−1(Ot−2, Yt−1)} | Ot−2, Rt−1 = 1, At = 1

]
E[exp{qt−1(Ot−2, Yt−1)} | Ot−2, Rt−1 = 1, At = 1]

. (6)

Let mt(Ot−2; θt,t−2) be a model for E(Yt | Ot−2, Rt−2 =
1, Rt−1 = 0, At = 1) (t = 2, . . . , J). By exploiting equation (6),
θt,t−2 can be estimated from the observed outcomes of sur-
vivors who are observed at visit t, and the already imputed
outcomes of survivors who drop out just before visit t, that
is, mt(Ot−1; θ̂t,t−1). The missing values of Yt in those who are
alive at visit t but drop out just before visit t − 1 are then
imputed as mt(Ot−2; θ̂t,t−2).

The same idea is then used to impute missing Yt in
subjects who are alive at visit t but drop out just before
visit t − 2, then those who drop out just before visit
t − 3, and so on. This method requires a model mt(Os; θt,s) for
each E(Yt | Os, Rs = 1, Rs+1 = 0, At = 1) (0 ≤ s < t ≤ J). Note
that post-death outcomes are not imputed.

Finally, having imputed all the missing pre-death outcomes,
the parameter β in the model of interest is estimated by apply-
ing IEE to the imputed data set. If mortal-cohort NFD holds,
the selection bias function and the sensitivity parameter γ

are correctly chosen, and the regression models mt(Os; θt,s) are
correctly specified, then this estimator of β is consistent.

3.3. Augmented Inverse Probability Weighting

We now propose augmented IPW (AIPW) estimating equa-
tions. These involve specifying a model for the probability
of dropout and a regression model to fill in the missing
outcomes with their expected values. The resulting esti-
mator is doubly robust, that is, it is consistent when the
missingness models are correctly specified at all visits, even
when the regression models are not, and vice versa. Let θ =
(θ1,0, θ2,0, . . . , θJ,0, θ2,1, θ3,1, . . . , θJ,1, θ3,2, . . . , θJ,2, . . . , θJ,J−1)

and let θ̂ be the corresponding estimator. We utilize the
IPW method described in Section 3.1 to model dropout and
obtain α̂, and the CMOR method described in Section 3.2 to

impute the missing outcome and obtain θ̂. Then we estimate
β by solving



(̂
α, θ̂, γ, β

)
=

n∑
i=1

J∑
t=1

Ait

(
∂μit

∂β

)
×

[
Rit(Yit − μit)

λt(Oi,t−1, Yit ; α̂, γ)
+

t−1∑
l=0

Ril

λl(Oi,l−1, Yil; α̂, γ){
1− Ri,l+1

πl+1(Oil, Yi,l+1; α̂l+1, γ)

}{
mt(Oil; θ̂t,l)−μit

}]
=0

(7)

The resulting estimator β̂ is consistent and asymptoti-
cally normally distributed if mortal-cohort NFD holds, the
selection bias function and the sensitivity parameter γ are
correctly chosen, and either the missingness models are cor-
rectly specified at all time points or the regression models
are correctly specified at all time points. In Web Appendix
G, we provide a formula for the asymptotic variance of β̂

and a corresponding estimator. Note that if the missingness
and regression models are misspecified, the variance estima-
tor is still consistent, even though the point estimator β̂ is, in
general, not consistent.

3.4. Monotone Missing Data When D Is Known

D is likely to be known if individuals in a study are linked to a
death registry. If D is known, then an option is to include it in
the missingness or the regression models (or both for AIPW).
If this is done, Assumption 1 should be modified to

P(Rt =1 |Rt−1 =1, Ot−1, Yt, D, At =1)>0, ∀t with probability1

and mortal-cohort NFD modified to “fully conditional mortal-
cohort NFD”:

P(Rt = 0 | Rt−1 = 1, Ot−1, Yt, . . . , YD, D, At = 1) =
P(Rt = 0 | Rt−1 = 1, Ot−1, Yt, D, At = 1)

In a sensitivity analysis, we can quantify the effect of per-
turbations to the assumption that qt(Ot−1, Yt ; γ) = 0 (i.e., the
assumption that Ot−1 includes all the variables that explain
missingness at visit t). This assumption is made more plau-
sible if we include D in the missingness or regression model,
as people may be more likely to drop out if they are near
death. Note that P(Rt = 0 | Rt−1 = 1, Ot−1, Yt, D, At = 1) =
P(Rt = 0 | Rt−1 = 1, Ot−1, D, At = 1) is referred to as fully
conditional-MAR in Wen et al. (2017).

When D is included in both missingness and regression
models and qt(Ot−1, Yt ; γ) = 0, the AIPW estimator that
solves equations (7) is equivalent to the AIPW estimator given
in Wen et al. (2017) (see Web Appendix F for proof).

4. Non-Ignorable Non-Monotone Missing Data
in a Mortal Cohort

Non-monotone missingness occurs when a subject who
misses a scheduled visit may return at a later visit. In
this section, we give estimators for non-ignorable non-
monotone missing data by adapting the methods from
VRR to make partly conditional inference. We redefine
Ot as Ot = (X0, R1, R1X1, R1Y1, . . . , Rt, RtXt, RtYt), and make
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“Assumption 2”:

P(Rt = 1 | Ot−1, Yt, At = 1) > 0, ∀t with probability one

Let λt(Ot−1, Yt ;αt, γ) be a model for λt(Ot−1, Yt) = P(Rt =
1 | Ot−1, Yt, At = 1) with finite dimensional parameters αt

and γ. The general functional form for λt(Ot−1, Yt ;αt, γ) is
given by equation (3), but with πt(Ot−1, Yt ;αt, γ) replaced by
λt(Ot−1, Yt ;αt, γ). Note that if we assume that qt(Ot−1, Yt ; γ) =
0, we obtain the “mortal-cohort sequential explainability”
assumption:

P(Rt = 1 | Ot−1, Yt, At = 1) = P(Rt = 1 | Ot−1, At = 1), ∀t

(8)

which correspond to sequential explainability (Vansteelandt
et al., 2007)—the assumption that Rt is independent of Yt

given Ot−1—conditional on subjects being alive.

4.1. Inverse Probability Weighting

If Assumption 2 holds, the selection bias function and the
sensitivity parameter are correctly chosen, and the model for
λt(Ot−1, Yt) is correctly specified, then the estimator α̂t that
solves

n∑
i=1

φt(Oi,t−1)Ait

λt(Oi,t−1, Yit ;αt, γ)

{
Rit − λt(Oi,t−1, Yit ;αt, γ)

} = 0, ∀t

where φt(Ot−1) is a function Ot−1 that has the same dimension

as αt , is consistent. Consequently, the estimator β̂ that solves
equations (4) is consistent.

4.2. Conditional Mean Outcome Regression

As in Section 3.2, we can relate the expected outcome at visit
t given Ot−1 in survivors who are not observed at visit t to the
expected outcome in survivors who are observed at visit t:

E(Yt | Ot−1, Rt = 0, At = 1) =
E[Yt exp{qt(Ot−1, Yt)} | Ot−1, Rt = 1, At = 1]

E[exp{qt(Ot−1, Yt)} | Ot−1, Rt = 1, At = 1]

Let mt

(
Ot−1; θt

)
be a regression model for mt

(
Ot−1

) =
E(Yt | Ot−1, Rt = 0, At = 1) with finite dimensional param-
eter θt . If the selection bias function and the sensitivity
parameter are correctly chosen, and the model for mt

(
Ot−1

)
is correctly specified, then the estimator θ̂t that solves∑n

i=1
AitRit exp{qt(Oi,t−1, Yit)}

{
Yit − mt

(
Oi,t−1; θt

)}
dt(Oi,t−1) =

0, where dt(Ot−1) is a function of Ot−1 that has the same
dimension as θt , is consistent. Replacing the missing pre-
death outcomes with their imputed values estimated from

mt

(
Ot−1; θ̂t

)
and analysing the imputed data set using IEE

will then give consistent estimates of β.

4.3. Augmented Inverse Probability Weighting

The AIPW estimators in VRR are attractive because the esti-
mates of β are consistent as long as one of missingness model

and regression model is correctly specified at each visit (i.e.,
if, for each t, either ht

(
Ot−1;αt

)
or mt

(
Ot−1; θt

)
is correctly

specified) and the selection bias function and the sensitivity
parameter are correct. To make partly conditional inference,
we modify their doubly robust estimating equations to be the
following:

n∑
i=1

J∑
t=1

Ait

∂μit

∂β

[
Rit

λt(Oi,t−1, Yit ; α̂t , γ)
(Yit − μit) +

{
1 − Rit

λt(Oi,t−1, Yit ; α̂t , γ)

}{
mt

(
Oi,t−1; θ̂t

)
− μit

}]
= 0

Note that, whereas the AIPW estimator for monotone miss-
ing data in Section 3.3 gives consistent estimation if the
missingness models are correctly specified at all time points or
the regression models are correctly specified at all time points,
this AIPW estimator for non-monotone missing data gives
consistent estimation if at each time point, either the miss-
ingness model or the regression model is correctly specified.

4.4. Non-Monotone Missing Data When D Is Known

If D is known for all subjects in a study, it can be included in
the missingness and/or the regression models. If this is done,
Assumption 2 should be modified to

P(Rt =1 |Ot−1,Yt, D,At = 1) > 0, ∀t with probability 1

(9)

We define “fully conditional mortal-cohort sequential
explainability” as the following modified version of equation
(8):

P(Rt =1 | Ot−1, Yt, D, At =1)=P(Rt =1 | Ot−1, D, At =1), ∀t

(10)

As discussed in Section 3.4, we could include D in the
missingness or regression model to make fully conditional
mortal-cohort sequential explainability more plausible.

5. Simulation Studies

We conducted two simulation studies to compare the meth-
ods. In each simulated data set, approximately 30% of
outcomes were missing due to death, and approximately 25%
of outcomes in those who are alive at each visit were missing.
There were J = 5 biennial scheduled visits, and P(R1 = A1 =
1) = 1. Each simulation study was based on 1000 simulated
data sets of sample size n = 500, and our aim is to estimate

E(Yt | At = 1) = β1 + β2I(t = 2) + β3I(t = 3) +
β4I(t = 4) + β5I(t = 5)

In simulation one, data were monotone missing (“monotone
study”) and in simulation two, data were non-monotone miss-
ing (“non-monotone study”).

X is a baseline variable with X ∼ Normal(2, 4). Let
U = |X|1.5. In both studies, the outcome Y1 was simulated
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from Y1 | X ∼ Normal(5 − 0.1U, 1), and vital status at each
visit (t ≥ 2) was generated from logistic regression model,
P(At = 1 | At−1 = 1, Y t−1, X) = expit(1.5 + 0.15Yt−1 − 0.05U).
For t ≥ 2, outcome Yt in the monotone study was
simulated from Yt | Ot−1, At = 1 ∼ Normal(5 − 0.2 ·
yeart − 0.1U + 0.05Yt−1, 1), and missingness was gen-
erated from P(Rt = 0 | Rt−1 = 1, Ot−1, Yt, At = 1) =
expit(−0.75 − 0.175Yt−1 + 0.1U − 0.2Yt).

For t ≥ 2, outcome Yt in the non-monotone study
was simulated from Yt | Yt−1, X, Rt−1 = r, Rt−2, At =
1 ∼ Normal(5 + αr · yeart − 0.1U + 0.05Yt−1, 1), where
α0 = −0.4 and α1 = −0.2; missingness at each visit
was generated from P(Rt = 0 | Ot−1, Yt, At = 1) =
expit(0.1 − 0.175Y

†
t−1 + 0.1U − 0.2Yt), where Y

†
t−1 = Yt−1

if Yt−1 is observed and 0 otherwise.
Note that in both simulations, qt(Ot−1, Yt ; γ) = γYt with

γ = −0.2. In the monotone study, the correct missingness
and regression models include Yt−1 and U. In the non-
monotone study, the correct missingness model includes Y

†
t−1

and U, and the correct regression model includes Rt−1, Y
†
t−1

and U. We show the double robustness of the proposed
AIPW method in the monotone study by replacing U by
X in the missingness or regression models at all visits,
and in the non-monotone study by omitting U from the
regression model at visit 4 and from the missingness model
at visit 5.

Table 2 shows the bias, empirical standard error and cov-
erage of 95% confidence intervals from IPW, CMOR, and
AIPW in the monotone study. Under correctly specified
missingness and regression models, the parameter estimates
from all three methods are nearly unbiased. When the
regression models are correctly specified and the missingness
models are not, AIPW provides nearly unbiased parameter

estimates but IPW does not. Conversely, when the miss-
ingness models are correctly specified and the regression
models are not, AIPW is nearly unbiased but CMOR is
not. In our simulation, AIPW is at least as efficient as
IPW when both the missingness and regression models are
correctly specified.

Table 3 shows the biases, empirical standard errors, and
coverages in the non-monotone study. Under correctly spec-
ified missingness and regression models, the estimates of β4

and β5 from all three methods are nearly unbiased. The IPW
estimator of β5 is biased when the missingness model at visit
5 is misspecified, and similarly the CMOR estimator of β4 is
biased when the regression model at visit 4 is misspecified.
In contrast, the AIPW estimators of β4 and β5 are nearly
unbiased when one of the missingness or regression models is
misspecified, but not both. Again AIPW is at least as effi-
cient as IPW when both models are correctly specified. Table
4 shows a sensitivity analysis in which γ is varied from 0 to
−0.5. As expected, the results show that as the assumed value
of γ deviates from its true value (−0.2), the bias increases (for
all three methods).

In general, the variances of β4 and β5 are slightly under-
estimated by all three methods, due to slow convergence
to the normal limiting distribution. This is reflected in the
slightly lower coverage probabilities for β4 and β5. We see
better results, in general, when n gets larger. In the non-
monotone study, for example, the coverage probability for
β5 in the IPW method was 91.6% when n = 500, but was
94.1% when n = 1000. Previous articles such as Shardell and
Miller (2008) have also noted the robust variance estimates
lead to undercoverage of confidence intervals at small sample
sizes and that bootstrap provides better variance estimates.
For this reason, we recommend using bootstrap to calculate

Table 2
Simulation results for the monotone study with n=500 and true parameters β1 = 4.1843, β2 = −0.0877, β3 = −0.4225,

β4 = −0.7836, β5 = −1.1552. Bias and empirical standard error (SE) are multiplied by 100. CP denotes coverage probability.

IPW CMOR AIPW
Misspecified

Param. models Bias SE CP Bias SE CP Bias SE CP

β2 None 0.15 7.57 95.2 −0.04 7.42 95.6 0.15 7.57 95.2
Missingness 6.49 7.59 86.1 −0.04 7.42 95.6 0.03 7.47 95.7
Regression 0.15 7.57 95.2 8.05 7.46 82.8 0.32 7.62 95.3

All 6.49 7.59 86.1 8.05 7.46 82.8 6.49 7.59 86.1

β3 None 0.83 11.27 90.9 −0.24 8.98 94.5 −0.03 9.55 93.1
Missingness 10.30 9.37 79.0 −0.24 8.98 94.5 −0.12 9.11 94.1
Regression 0.83 11.27 90.9 12.39 8.76 71.4 0.86 10.54 92.6

All 10.30 9.37 79.0 12.39 8.76 71.4 10.09 9.04 79.6

β4 None 1.46 14.67 89.8 −0.55 10.72 95.3 −0.17 11.86 93.8
Missingness 11.90 10.91 77.4 −0.55 10.72 95.3 −0.53 10.99 94.8
Regression 1.46 14.67 89.8 14.39 10.24 69.8 1.43 13.85 92.5

All 11.90 10.91 77.4 14.39 10.24 69.8 11.57 10.66 78.4

β5 None 2.59 16.63 90.5 −0.35 11.95 93.6 −0.03 13.85 94.3
Missingness 13.30 12.25 78.6 −0.35 11.95 93.6 −0.29 12.31 95.5
Regression 2.59 16.63 90.5 16.12 11.15 67.8 2.69 15.82 93.0

All 13.30 12.25 78.6 16.12 11.15 67.8 12.97 11.90 80.6

Note: For β1: (bias×100, SE×100, CP) = (0.40, 5.91, 95.0) in all methods.
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Table 3
Simulation results for the non-monotone study with n=500 and true parameters β4 = −1.2353, β5 = −1.8086. Bias and

empirical standard error (SE) are multiplied by 100. CP denotes coverage probability. {m4(O3), h5(O4)} represents
misspecification in the outcome regression model at visit 4 and misspecification in the missingness model at visit 5.

IPW CMOR AIPW
Misspecified

Param. models Bias SE CP Bias SE CP Bias SE CP

β4 Neither 0.79 11.98 92.6 0.66 11.48 94.6 0.72 11.86 93.1
{m4(O3), h5(O4)} 0.79 11.98 92.6 13.28 11.09 73.9 0.87 11.87 92.8

All 13.79 11.05 75.9 13.28 11.09 73.9 13.74 11.06 74.2

β5 Neither 1.35 14.00 91.6 0.95 13.37 93.3 1.11 13.62 92.2
{m4(O3), h5(O4)} 12.83 12.67 81.2 0.95 13.37 93.3 0.95 13.38 93.3

All 12.83 12.67 81.2 12.15 12.79 79.1 12.77 12.67 79.5

standard error, as is done in the following analysis of the
HRS data.

6. Application of Methods to HRS

The aim in this illustrative example is to understand how
mean cognitive function given survival changes over time
and how it depends on age, sex, and education. Researchers
have previously classified adults older than 80 or 85 as the

“oldest old” in various cohort studies (e.g., the Origins of
Variance in the Old-Old, the English Longitudinal Study of
Ageing, and the Survey of Health, Ageing and Retirement
in Europe studies), and many have emphasized the impor-
tance of studying this group of subjects. As described by the
National Institute of Ageing: “Over time, more older people
survive to even more advanced ages. [. . . ] Because of chronic
disease, the oldest old have the highest population levels of

Table 4
Sensitivity analysis for the non-monotone study with n=500 and true parameters β1 = 4.1843, β2 = −0.0877, β3 = −0.6753,
β4 = −1.2353, β5 = −1.8086. Bias and empirical standard error (SE) are multiplied by 100. CP denotes coverage probability.

IPW CMOR AIPW

Parameter Bias SE CP Bias SE CP Bias SE CP

γ = 0

β2 7.31 8.29 85.9 7.24 8.09 85.6 7.31 8.29 85.9
β3 7.96 10.04 84.5 8.12 9.44 86.0 7.76 10.05 85.5
β4 8.90 11.68 86.2 8.71 11.15 86.4 8.43 11.58 86.1
β5 10.53 13.78 83.7 9.39 13.16 85.9 9.21 13.42 85.4

γ = −0.1

β2 4.21 8.28 92.3 4.02 8.09 93.2 4.21 8.28 92.3
β3 4.28 10.10 91.2 4.33 9.50 92.7 4.15 10.10 91.2
β4 4.83 11.80 90.2 4.67 11.28 91.6 4.57 11.70 91.3
β5 5.93 13.86 88.8 5.15 13.23 91.5 5.15 13.49 90.0

γ = −0.3

β2 −1.97 8.35 94.4 −2.36 8.20 94.4 −1.97 8.35 94.4
β3 −3.03 10.35 93.4 −3.17 9.82 94.1 −3.03 10.32 93.5
β4 −3.22 12.20 92.3 −3.31 11.74 93.7 −3.10 12.06 92.8
β5 −3.17 14.21 91.6 −3.21 13.59 93.6 −2.91 13.82 92.3

γ = −0.4

β2 −5.05 8.44 89.9 −5.52 8.31 89.4 −5.05 8.44 89.9
β3 −6.66 10.53 89.4 −6.85 10.05 90.0 −6.57 10.48 89.0
β4 −7.20 12.47 89.0 −7.20 12.05 89.7 −6.88 12.31 88.9
β5 −7.64 14.49 88.0 −7.29 13.89 90.2 −6.89 14.08 90.2

γ = −0.5

β2 −8.11 8.57 83.6 −8.65 8.46 83.7 −8.11 8.57 83.6
β3 −10.24 10.75 81.9 −10.45 10.32 83.1 −10.07 10.68 82.4
β4 −11.12 12.79 83.2 −11.01 12.41 84.5 −10.60 12.60 84.3
β5 −12.04 14.83 82.1 −11.29 14.25 84.1 −10.81 14.39 83.6

Note: For β1: (bias×100, SE×100, CP) = (0.01, 5.78, 94.5) in all methods (and γ).
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disability that require long-term care. They consume public
resources disproportionately as well.” Hence, it is important
to describe how cognitive function changes in the oldest old,
as it is indicative of mental disability and therefore affects care
requirements. Being able to estimate average cognitive func-
tion is important for making decisions about the allocation of
care resources.

We focus on adults who were 80 years or older in 2004, and
the model of interest is that given by equation (1). We exclude
subjects who entered the study after 2004 or died before 2004
or had missing cognitive scores at all five visits. With the
exception of 11 subjects, vital status is known at each sched-
uled visit time up to the end of the study. After additionally
removing these 11 subjects, the number of subjects in our
sample is 2616. 33% of the cognitive scores are missing due
to death and 15% are missing due to other reasons. Among
the outcomes of those who are alive at each visit, 3% are
intermittent missing. To analyze these non-monotone miss-
ing data, we use the methods from Section 4. The first class
of selection bias functions that we consider is {γYt : γ ∈ R}.
It is plausible that the residual association between Rt and
Yt after adjusting for Ot−1 is different in subjects who were
observed at the last visit than in those who were not, since
Ot−1 includes Yt−1 for the first group but not for the sec-
ond group. Hence we consider a second class of selection bias
function: {γ1Rt−1Yt + γ2(1 − Rt−1)Yt : γ1, γ2 ∈ R}.

We first consider the case where γ = 0 (or γ1 = γ2 = 0).
This corresponds to the assumption that Ot−1 sufficiently
explains the reasons for missingness at visit t. Including D

in the missingness or regression model makes this assumption
more plausible in the HRS data, because people were more
likely to miss a visit when they were near death. Hence, we
let fully conditional mortal-cohort sequential explainability be
a benchmark assumption, and perform sensitivity analysis to
determine if the β parameter estimates are robust to devia-
tions from this benchmark. The missingness and regression
models for visit t include sex, education, Rt−1, observed Yt−1

(i.e., Rt−1Yt−1), baseline age, and D.

6.1. First Class of Selection Bias Function: {γYt : γ ∈ R}
Here, γ is the log odds ratio of missing a visit at t for subjects
whose Yt = y compared to missing a visit at t for subjects
whose Yt = y − 1, with Ot−1 and D held constant:

exp(γ) = P(Rt = 0 | Ot−1, Yt = y, D, At = 1)

P(Rt = 1 | Ot−1, Yt = y, D, At = 1)

/
P(Rt = 0 | Ot−1, Yt = y − 1, D, At = 1)

P(Rt = 1 | Ot−1, Yt = y − 1, D, At = 1)

Negative values of γ imply that those with lower cognitive
scores are more likely to miss a visit than those with higher
cognitive scores. We assume γ ≤ 0, because people with lower
cognitive scores are likely to be more frail than people with
higher cognitive scores and therefore more likely to miss a
visit. As γ becomes increasingly negative, we would expect
to see a decrease in the proportion of higher cognitive scores
in the missing data, so that for extreme negative values of
γ, all missing cognitive scores would be low. We consider a

range of values for γ of [0, −0.3]. The rationale for this range
is that in an exploratory analysis conditioning on sex, edu-
cation, Rt−1, observed Yt−2 (i.e., Rt−2Yt−2), baseline age and
D, the estimated log odds of missing a visit at times 4, 6,
and 8 (i.e., visits 3, 4, and 5) per unit increase in observed
Yt−1 were respectively −0.157, −0.166, and −0.145. Hence, we
would also expect that those with worse cognitive function at
visit t are more likely to be missing at visit t than those with
better cognitive function at visit t. However, we also expect
a stronger dependence of missingness at visit t on Yt than on
Yt−1. Therefore we allowed γ to be as low as −0.3, which is
almost twice as big as the associations between the log odds
of missingness at visit t and Yt−1. γ = −0.3 indicates that the
odds of missing visit t is reduced by 26% if Yt = y instead of
Yt = y − 1, with all other variables held constant. In the Web
Appendix I, we show results for more extreme values of γ

(up to −0.70).

6.2. Second Class of Selection Bias Function:
{γ1Rt−1Yt + γ2(1 − Rt−1)Yt : γ1, γ2 ∈ R}

Here, γ1 (respectively, γ2) is the log odds ratio of missing a
visit at t for subjects whose Yt = y and Rt−1 = 1 (Rt−1 = 0)
compared to subjects whose Yt = y − 1 and Rt−1 = 1 (Rt−1 =
0), with Ot−1 and D held constant:

exp{γ1Rt−1 + γ2(1 − Rt−1)} =
P(Rt = 0 | Ot−1, Yt = y, D, At = 1)

P(Rt = 1 | Ot−1, Yt = y, D, At = 1)

/
P(Rt = 0 | Ot−1, Yt = y − 1, D, At = 1)

P(Rt = 1 | Ot−1, Yt = y − 1, D, At = 1)

Since Yt−1 and Yt are associated, when Yt is observed (i.e.,
Rt = 1) one can think of Yt−1 as “absorbing” part of the
effect of Yt on Rt . So, when Rt−1 = 0, the residual effect
of Yt on Rt may be greater than when Rt−1 = 1. Thus, we
assume γ2 ≤ γ1 ≤ 0 and consider γ1 = {−0.2, −0.25, −0.3} and
γ2 = cγ1, where c = {1.25, 1.5, 2}.
6.3. Results

The parameter estimates and standard errors from the first
selection bias function are shown in Table 5. In general, the
parameters associated with t (βt, βtage, βtsex) were sensitive to

the choice of γ. First, β̂t ranged from −0.125 (p = 0.32; γ = 0)
to −0.245 (p = 0.05; γ = −0.3) in IPW, and from −0.118
(p = 0.35; γ = 0) to −0.208 (p = 0.09; γ = −0.3) in AIPW.
Hence in IPW and AIPW, when the association between
Rt and Yt given Ot−1 and D is stronger, the downward lin-
ear trend in the mean is bigger. Second, β̂tage ranged from
−0.030 (p < 0.001; γ = 0) to −0.018 (p = 0.08; γ = −0.3) in
IPW, and from −0.026 (p = 0.002; γ = 0) to −0.018 (p = 0.03;
γ = −0.3) in AIPW. Hence in IPW and AIPW, when the
association between Rt and Yt given Ot−1 and D is stronger,
the difference between the rates of change over time in mean
outcome given survival in old and young subjects is smaller.
Third, β̂tsex ranged from −0.101 (p = 0.11; γ = 0) to −0.206
(p = 0.001; γ = −0.3) in IPW, from −0.037 (p = 0.43; γ = 0)
to −0.100 (p = 0.09; γ = −0.3) in CMOR, and from −0.105
(p = 0.08; γ = 0) to −0.157 (p = 0.006; γ = −0.3) in AIPW.
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Hence, when the association between Rt and Yt given Ot−1 and
D is stronger, the difference between the rates of change over
time in mean outcome given survival in males and females
is bigger.

Table 5 shows that for values of γ between −0.2 and
−0.3, qualitative conclusions from IPW, CMOR, and AIPW
did not differ much. AIPW (e.g., when γ = −0.25) suggests
that, controlling for other variables, i) the older a person is
at recruitment, the worse their initial cognitive function is
(β̂age = −0.325, p < 0.001); ii) the more education a person

has, the better their initial cognitive function is (β̂edu = 0.730,
p < 0.001); and iii) the change over time in mean cognitive
function given survival is greater in the group who are older at
recruitment or are female than in the group who are younger
(β̂tage = −0.018, p = 0.03) or male (β̂tsex = 0.153, p = 0.006).

In Web Appendix I, Table 2 shows results for more extreme
values of γ, and Table 3 shows results from using the second
selection bias function. In both tables, the results are not
much different from those presented above (when γ is between
−0.2 and −0.3), although they do differ slightly for the most

extreme values of γ and c. This can be seen in β̂t (Table 2)

when γ = −0.70, and in β̂t and β̂t2 (Table 3) when c = 2. Since
the extreme values are less probable, the first selection bias
function is likely sufficient.

While the partly conditional model provides a description
of how mean cognitive function in survivors depends on time
and covariates like sex and education, it does not explain
why these dependences arise. They could arise from multiple
causes: differing initial outcomes in different types of subject;
changes in outcome within subjects over time; and, impor-
tantly, differing hazards of death in different types of subject.
For example, an association between being a woman (respec-
tively, being older) and a faster decrease over time in mean
outcome given survival could be partly due to mortality being
higher in women (older subjects) with good cognitive function
than in men (younger subjects) with good cognitive function.
Thus, the outcome and death processes are interlinked. No
single estimand can fully describe both processes simultane-
ously. For this reason, to better understand why dependencies
arise, it could be of interest to supplement the results from
a partly conditional model with estimates from a model for
the hazard of death, as we show in Web Appendix I. In brief,
the estimates from the supplementary survival analysis of the
HRS data indicate that we can likely rule out differing hazards
of death as one of the reasons for these dependencies.

7. Discussion

We have described several semi-parametric methods (IPW,
CMOR, and AIPW) to make partly conditional inference for
non-ignorable missing data. As in RRS and VRR, our meth-
ods use a tilt function that relates the distribution of an
outcome at visit t among those who were last observed at some
time before t to those who were observed at visit t. Unlike
RRS and VRR, we distinguish between death and other types
of missingness, and make partly conditional inference. We
have demonstrated the validity of the proposed methods in
simulation studies, and illustrated our method using data
from the HRS.

There are many options for the parametrization of the
selection bias function qt(Ot−1, Yt ; γ). Some authors argue that
it is useful to elicit expert’s opinion about plausible selection
bias functions (Rotnitzky et al., 2001; Shardell et al., 2010).
Scharfstein et al. (2003) and Scharfstein et al. (2014) pro-
pose to use a low-dimensional parametrization of the selection
bias function. They argue that a low dimension offers a more
meaningful way for experts to encode their beliefs about the
missingness process than a higher dimension. That is, it is
desirable to restrict attention to a simple class of functions,
so that the selection bias function is easily interpretable. As
described in Scharfstein et al. (2003), “the aim is not to find
the truth about this function, but to report an analysis which
reasonably reflects an expert’s beliefs about selection bias.” In
our data analysis, we used qt(Ot−1, Yt ; γ) = γYt ; this was also
used by Shardell et al. (2010) and Scharfstein et al. (2014).
We also used qt(Ot−1, Yt ; γ) = γ1Rt−1Yt + γ2(1 − Rt−1)Yt , but
obtained similar results.

Once the parametrization of qt(Ot−1, Yt ; γ) has been chosen,
it is important to choose a plausible range of values for the
sensitivity parameter. For example, the values can be selected
based on experience from another similar data set analysis.
When this is not possible, it might be useful to elicit expert
opinion. See White (2014) for a comprehensive overview of
this. Scharfstein et al. (2014) advise to compare the esti-
mated average outcome among those who have dropped out
with the observed average outcome among those who have
not for different choices of γ. This allows experts to assess
the plausibility of these imputed outcomes, and hence judge
the plausibility of the sensitivity parameter value. In our
HRS data analysis, we considered two simple selection bias
functions, so that the magnitude and sign of the sensitivity
parameter(s) were easy to interpret.

Alternatively, one could perform a “tipping point” anal-
ysis to investigate what values of the sensitivity parameter
substantially change the conclusions about the statistical sig-
nificance of the parameters of interest. Liublinska and Rubin
(2014), for example, graphically illustrate an “enhanced
tipping point” analysis for binary outcomes in combination
with imputation procedures for the missing data.

Finally, although the AIPW estimators are doubly robust,
they can be inconsistent when the missingness and regres-
sion models are both misspecified. Recently Vermeulen and
Vansteelandt (2015) described how to estimate the parame-
ters of these two models in a way that minimises the squared
asymptotic bias of the doubly robust estimator even when
both models are misspecified. It may be possible to adapt
this method for our AIPW estimators.

8. Supplementary Materials

Web Appendix referenced in Sections 1, 3, and 6 is available
with this article at the Biometrics website on Wiley Online
Library.
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