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Summary. Analysis of matched case-control studies is often complicated by missing data on covariates. Analysis can be
restricted to individuals with complete data, but this is inefficient and may be biased. Multiple imputation (MI) is an efficient
and flexible alternative. We describe two MI approaches. The first uses a model for the data on an individual and includes
matching variables; the second uses a model for the data on a whole matched set and avoids the need to model the matching
variables. Within each approach, we consider three methods: full-conditional specification (FCS), joint model MI using a
normal model, and joint model MI using a latent normal model. We show that FCS MI is asymptotically equivalent to
joint model MI using a restricted general location model that is compatible with the conditional logistic regression analysis
model. The normal and latent normal imputation models are not compatible with this analysis model. All methods allow for
multiple partially-observed covariates, non-monotone missingness, and multiple controls per case. They can be easily applied
in standard statistical software and valid variance estimates obtained using Rubin’s Rules. We compare the methods in a
simulation study. The approach of including the matching variables is most efficient. Within each approach, the FCS MI
method generally yields the least-biased odds ratio estimates, but normal or latent normal joint model MI is sometimes more
efficient. All methods have good confidence interval coverage. Data on colorectal cancer and fibre intake from the EPIC-Norfolk
study are used to illustrate the methods, in particular showing how efficiency is gained relative to just using individuals with
complete data.

Key words: Chained equations; Compatibility; MICE; Multilevel MI; Restricted general location model.

1. Introduction
Case-control studies are used to investigate associations
between disease and putative risk factors. Confounding of
observed associations can be handled at the design stage by
matching cases and controls on confounders, at the analysis
stage by adjusting for confounders using a regression model,
or by a combination of these. In matched case-control studies,
each case is individually matched with one or more controls
on a subset of confounders and the (usual) analysis uses con-
ditional logistic regression (CLR) to control for the remaining
confounders.

Often, the analysis is complicated by missing data on
covariates (i.e., exposures and remaining confounders). A
common solution is to restrict analysis to individuals with
complete data. Although appealing for its simplicity, this
“complete-case analysis” (“case” here means any individual,
rather than an individual with disease) is inefficient and may
be biased. In particular, where exclusion of a case or control
leaves a matched set in which remaining members are either
all cases or all controls, the whole set ceases to contribute
information to the CLR estimating equations.

To improve efficiency and reduce bias, several alternatives
have been proposed. Lipsitz et al. (1998) allow for one par-
tially observed covariate. They assume data are missing at
random (MAR) and fit a missingness model, i.e., a model for
the probability that an individual is a complete case. Func-
tions of the fitted probabilities are then used as offsets in CLR.

This consistently estimates odds ratios (ORs) when the miss-
ingness model is correctly specified, but is inefficient as it only
uses data on complete cases. Paik and Sacco (2000) also allow
for just one partially observed covariate and assume MAR.
They assume a model for the distribution of the partially
observed covariate given the other covariates, matching vari-
ables and binary disease status. When this covariate model
is correctly specified, consistent estimation of the ORs can
be achieved by CLR after imputing the missing covariate as
its fitted value when the disease status variable is set to 0.5.
Rathouz (2003) notes that this method implicitly assumes
missingness does not depend on disease status, and generalizes
it to allow for such dependence, as well as for multiple missing
covariates. His method assumes the partially observed covari-
ates are all observed or all missing on each individual. Sinha
and Wang (2009) take a similar approach, but instead of a
parametric covariate model, kernel density estimation is used
for those functions in the estimating equations that depend on
the distribution of the partially observed covariate. They find
their OR estimator is less biased than that of Paik and Sacco
(2000) when the latter’s covariate model is misspecified. A
drawback is that categorical variables are handled by strat-
ifying individuals on these variables and performing kernel
density estimation separately in each stratum, which limits
the feasible number of categorical variables (and categories).
Paik (2004) extends Paik and Sacco’s (2000) method to allow
for data missing not at random (MNAR).
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The forementioned methods all reduce to standard CLR
when there are no missing data: the assumed missingness or
covariate model then becomes irrelevant. Other methods for
missing data derive information from an assumed covariate
model even when data are complete. These methods may be
more efficient but at the cost of possible bias when the covari-
ate model is misspecified. Satten and Carroll (2000) propose
such a method. This allows for multiple partially observed
covariates, but assumes these are all observed or all missing
on each individual. Ahn et al. (2011) generalize it to allow
for MNAR and multiple disease states. Rathouz et al. (2002)
elaborate Lipsitz et al.’s (1998) method to use a covariate
model and so gain efficiency. The resulting estimator is doubly
robust but difficult to implement. They also propose a more
practical approximation which, though not doubly robust,
still gains efficiency. Liu et al. (2013) use empirical likelihood
to develop a semiparametric-efficient competitor to Rathouz
et al.’s (2002) estimator. Gebregziabher and DeSantis (2010)
assume all covariates are categorical and carry out multiple
imputation (MI) using a latent-class model. A drawback is
that imputation of a individual’s missing value makes no use
of data on matching variables, covariate values of other indi-
viduals in the same matched set, or disease status, which may
cause bias (Moons et al., 2006) and inefficiency.

The methods described so far assume the distribution of
the partially observed covariate(s) given fully observed covari-
ates, disease status, and matching variables can be modeled
parametrically. Sometimes this is not feasible. For example, if
cases are matched with controls from the same family, from
the same postcode area, or from the set of patients attend-
ing the same general practice, it could be difficult to model
parametrically the matching via explicit matching variables,
while the alternative of allowing a separate nuisance param-
eter for each matched set may cause problems with model
fitting and induce bias and even inconsistency of estimators.
Even when matching could, in principle, be modeled paramet-
rically, this is only possible if the analyst has data on matching
variables, which is not always so, and some analysts may pre-
fer to avoid modeling effects of matching variables, since CLR
makes no assumptions about the association between disease
and matching variables. One solution, adopted by Sinha et al.
(2005), is to allow each matched set to have its own parame-
ter in the covariate model but treat these as random effects.
They assume a single partially observed covariate and that the
random effects are generated by a Dirichlet process. They fit
their Bayesian model using a Hastings–Metropolis algorithm
with specially written computer code.

Though useful, these methods have limitations. Many
assume only one partially observed covariate or that partially
observed covariates are collectively observed or missing on
each individual. Many require bespoke computer code. Most
require parametric modeling of matching variables. In this
article, we advocate the use of MI, proposing, and compar-
ing six MI methods suitable for matched case-control data
that can be easily implemented in commonly used statistical
packages. MI has several advantages. First, it is increasingly
being used to handle missing data and many researchers are
familiar with the technique. Second, MI software is read-
ily available and easy to use. Third, MI allows for multiple
partially observed covariates without needing them to be

collectively observed or missing. Fourth, MI can easily incor-
porate information on variables that are not included in the
CLR model but are predictive of missing covariates in that
model. This can increase efficiency and can also reduce bias
when these extra variables are required to make the MAR
assumption more plausible. Fifth, we propose both methods
that parametrically model matching variables and methods
in which this is not required. Arguably, a sixth advantage is
that, unlike some of the methods proposed earlier, MI reduces
to standard CLR when there are no missing data. Although
this means MI does not offer the potential efficiency gain asso-
ciated with methods that make use of a covariate model even
when data are complete, it should make it more robust to
misspecification of that model.

We illustrate the use of MI for matched case-control data on
a study of association between fibre intake and colerectal can-
cer nested within the European Prospective Investigation of
Cancer (EPIC) Norfolk cohort. This is one of the studies in the
UK Dietary Cohort Consortium, which combines case-control
studies nested within several cohorts. Results from this study
have been described elsewhere (Dahm et al., 2010). Cases were
individuals in the EPIC Norfolk cohort diagnosed with col-
orectal cancer between recruitment to the cohort (1993–1998)
and the end of 2006. Seven-day diet diaries were completed
by participants shortly after recruitment to the underlying
cohort and stored for later use. The diet diaries were pro-
cessed for individuals selected for the case-control sample to
obtain measures of average daily intake of foods and nutrients
(Dahm et al., 2010). There were 318 colorectal cancer cases
and each was matched with four controls on sex, age within 3
years, and date of diary completion within 3 months. Controls
had to be alive and have not been diagnosed with colorectal
cancer at the end of 2006. In the original analysis, the associ-
ation between fibre intake and colorectal cancer was adjusted
for several potential confounders using CLR : smoking sta-
tus (three categories), education (four categories), social class
(six categories), and physical activity level (four categories),
and height, weight, exact age, alcohol intake, folate intake,
intake of energy from fat, and intake of energy from non-
fat (all continuous). We wished also to adjust for aspirin use
(two categories). Many other studies have adjusted for aspirin
use (Aune et al., 2011), which is known to be associated
with reduced risk of colorectal cancer (Asano and McLeod,
2004; National Cancer Institute, 2014). It was omitted from
the original analysis (Dahm et al., 2010) because it was not
measured in some of the contributing studies. Of the 1590
individuals in the study, 328 (78 cases and 250 controls) were
missing one or more adjustment variables, most commonly
aspirin use or social class; the main exposure, fibre intake, and
the matching variables were fully observed. A complete-case
analysis uses only 240 (75%) matched sets and 1012 (64%)
individuals.

The article is structured as follows. Section 2 discusses CLR
with complete data. Section 3 describes MI in general. For
matched case-control studies, Section 4 proposes three MI
methods that parametrically model the matching variables,
and Section 5 three analogous methods that avoid this. Sec-
tion 6 contains a simulation study comparing the methods.
Section 7 describes their application to the EPIC study. We
end with a discussion in Section 8.
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2. Analysis of Matched Case-Control Studies
with Complete Data

For each individual in the population, let D = 1 if he/she has
disease and D = 0 otherwise. So, D = 1 for cases and D = 0
for controls. Let S denote the variables used to match controls
with cases. Let Xcat and Xcon denote categorical and continu-
ous covariates, respectively. A categorical variable with m > 2
levels is coded as m − 1 dummy variables. Assume

P(D = 1 | Xcat, Xcon, S)

= exp{β�
catX

cat + β�
conXcon + q(S)}

1 + exp{β�
catX

cat + β�
conXcon + q(S)} , (1)

where q(S) = logit P(D = 1 | Xcat = 0, Xcon = 0, S). Let M

denote the number of controls matched with each case. We
use subscript j (j = 1, . . . , M + 1) to index individual within
set and assume cases and controls have been ordered so that
D1 = 1 and D2 = · · · = DM+1 = 0.

In ordinary logistic regression the log ORs βcat and βcon

are estimated by maximizing the likelihood based on expres-
sion (1) and the data on the sampled individuals. This requires
that either q(S) is modeled or a separate baseline parameter
is included for each matched set. The former corresponds to
breaking the matching and adjusting for S, which there is
often a reluctance to do, because it requires a functional form
to be specified for the effect of matching variables on disease
risk. The alternative of including a baseline parameter for
each set yields inconsistent maximum likelihood estimates
(Breslow and Day, 1980). For this reason, CLR is often used
instead. CLR includes a baseline parameter for each set, but
then eliminates these from the likelihood by conditioning on
the number of cases and controls in each set. Let G(xcat

1 , xcon
1 ,

. . . , xcat
M+1, x

con
M+1) denote the conditional probability that (Xcat

1 ,

Xcon
1 ) = (xcat

1 , xcon
1 ) given that (Xcat

1 , Xcon
1 )=(xcat∗

1 , xcon∗
1 ), . . . ,

(Xcat
M+1, X

con
M+1) = (xcat∗

M+1, x
con∗
M+1) for some permutation (xcat∗

1 ,

xcon∗
1 ), . . . , (xcat∗

M+1, x
con∗
M+1) of (xcat

1 , xcon
1 ), . . . , (xcat

M+1, x
con
M+1) and

given that D1 = 1 and D2 = . . . = DM+1 = 0 and S1 = . . . =
SM+1. Equation (1) implies

G(xcat
1 , xcon

1 , . . . , xcat
M+1, x

cat
M+1)

= exp(β�
catx

cat
1 + β�

conxcon
1 )

∑M+1

j=1
exp(β�

catx
cat
j + β�

conxcon
j )

, (2)

and vice versa (Web Appendix A). CLR finds the values of
βcat and βcon that maximize the product of expression (2) over
the matched sets; these consistently estimate the log ORs .

3. Joint Model MI and Full-Conditional
Specification (FCS) MI

We briefly review the most commonly used forms of MI: joint
model MI and FCS MI (Web Appendix B has more detail). In
joint model MI, a Bayesian model with non-informative priors
is specified for the distribution of the partially observed vari-
ables given fully observed variables. This “imputation model”
is fitted to the observed data, and values for missing variables
are then sampled from their joint posterior predictive distri-

bution. The model of interest (“analysis model”) is fitted to
each resulting complete (or “imputed”) dataset separately,
and the parameter and variance estimates obtained are com-
bined using simple equations called Rubin’s Rules. When
the imputation model is correctly specified and is compati-
ble with the analysis model, i.e., there exists a model for the
joint distribution of all the variables that implies the analy-
sis and imputation models as submodels, and data are MAR,
joint model MI gives consistent parameter and variance esti-
mates for the analysis model. Thus, compatibility, if possible,
is desirable. The first of the methods described in each of
Sections 4 and 5 are based on imputation models that are
compatible with the CLR analysis model.

Instead of requiring a joint model for the partially observed
variables, FCS MI involves specifying a model for the condi-
tional distribution of each partially observed variable given all
other variables. The FCS algorithm cycles through these mod-
els, sampling missing values for the dependent variable in the
current model given the observed and most recently sampled
values of all the other variables, until convergence is achieved.
This may be easier than specifying and fitting a joint model.
In special cases, FCS corresponds to joint model MI (Hughes
et al., 2014). Otherwise, FCS is less theoretically justified, but
there is much evidence that it works well in terms of approx-
imate unbiasedness of parameter and variance estimates and
coverage of confidence intervals (van Buuren, 2012; Hughes
et al., 2014; Lee and Carlin, 2010). An important theoretical
result was given by Liu et al. (2014). They defined the set of
conditional models to be compatible with a joint model if, for
each conditional model and every possible set of parameter
values for that model, there exists a set of parameter values
for the joint model such that the conditional and joint mod-
els imply the same distribution for the dependent variable of
that conditional model. They showed that when this compat-
ibility holds, the distribution of the data imputed by FCS MI
converges, as sample size tends to infinity, to the posterior
predictive distribution of the missing data under that joint
model. Hence, FCS MI is asymptotically equivalent to joint
model MI in this case. The first of the MI methods in each of
Sections 4 and 5 use this asymptotic result.

4. MI Using Matching Variables

Let R denote the missingness pattern in (Xcat�, Xcon�)�.
Assume D and S are fully observed and the data are
MAR. In this section, we propose multiply imputing miss-
ing (Xcat�, Xcon�)� from its conditional distribution given S

and D. We call this “MI using matching variables.” It is analo-
gous to breaking the matching and adjusting for the matching
variables. However, matching is broken only to impute miss-
ing data; matching is then restored and the imputed data
analyzed using CLR. Most methods reviewed in Section 1
effectively break the matching for the individuals with miss-
ing data. In Section 5, we describe an alternative (“MI using
matched set”), which imputes without breaking the match-
ing. We now propose three ways of modeling the distribution
of (Xcat�, Xcon�)� given S and D.

The first model for (Xcat�, Xcon�)� given S and D is a
restricted general location model (Schafer, 1997). This has
a log-linear model for Xcat and normal model for Xcon given
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Xcat:

P(Xcat = xcat | S, D) = exp{a(xcat, S; ζ) + Dλ�xcat}∑
xcat

′ exp{a(xcat′
, S; ζ) + Dλ�xcat′ }

(3)

Xcon | Xcat, S, D ∼ N(α + φD + γXcat + δS, 	) (4)

where a(xcat, S; ζ) includes a main effect for Xcat and all pair-
wise interactions between Xcat and S and between pairs of
elements of Xcat. Vectors λ, ζ, α and φ and matrices γ, δ and 	

are unknown parameters. In Web Appendix C, we prove that
(3)–(4) imply that equation (2) holds with βcat = λ − γ�	−1φ

and βcon = 	−1φ. Hence, this model is compatible with the
CLR analysis model.

Bayesian modeling software, such as WinBUGS (Lunn
et al., 2000), can be used to impute missing (Xcat�, Xcon�)�

from its posterior predictive distribution implied by joint
model (3)–(4). However, such software requires specialist pro-
gramming skills. Instead, we propose using FCS MI with a
set of conditional models that is compatible with this joint
model, and hence is asymptotically equivalent to joint model
MI. FCS MI is widely available in general-purpose statisti-
cal packages, e.g., Stata, R, and SAS. In Web Appendix D,
we show that a compatible conditional model for a partially
observed continuous covariate (an element of Xcon) is a linear
regression of this covariate on S, D, Xcat and the remaining
elements of Xcon. Likewise, a compatible conditional model
for one of the partially observed categorical covariates making
up Xcat is a multinomial logistic regression of this categorical
covariate on S, D, Xcon and those elements of Xcat that are
not dummy indicators for this categorical covariate. Conve-
niently, these conditional models are the default options in
many MI packages.

Although asymptotically equivalent, in finite samples this
FCS MI method may be inefficient compared to joint model
MI, because it estimates the parameters of the conditional
model for Xcat using only part of the available data on
Xcon (Hughes et al., 2014). Our second proposed model for
(Xcat�, Xcon�)� given S and D is a latent normal model
(Carpenter and Kenward, 2013). This is not compatible with
the CLR analysis model, but it has the advantage that it
can be used for joint model MI without needing specialist
Bayesian software. For simplicity, suppose that all the cat-
egorical covariates are binary (see Carpenter and Kenward
(2013) for general case). The latent normal model is

(Xcon�, Wcat�)� | S, D ∼ N(αLN + φLND + δLNS, 	LN) (5)

where Wcat is a vector of latent variables (each with unit vari-
ance), one for each element of Xcat, and such that an element
of Xcat equals 1 if its corresponding element of Wcat is pos-
itive and 0 otherwise. αLN, φLN, δLN, and 	LN are unknown
parameters. Joint model MI using (5) can be done using the
software REALCOM-MI or the jomo package in R. The real-
comImpute program provides an interface between Stata and
REALCOM-MI.

When all partially observed covariates are continuous, our
FCS MI method and joint model MI using (5) both reduce to

joint model MI using the normal model (4). Use of this nor-
mal model for MI even when some partially observed variables
are categorical was originally promoted by Schafer (1997)
and has become common. Although the model is obviously
misspecified, this method has been found to work well in
many situations and software is widely available, e.g., mi mvn
impute in Stata and norm in R. Thus, our third proposed
model for (Xcat�, Xcon�)� given S and D is expression (5)
with Wcat replaced by Xcat. Following Bernaards et al. (2007),
we use “adaptive rounding” after imputation to handle non-
integer imputed values of Xcat.

5. MI Using Matched Set

Now, we propose three models for Xset = (Xcat�
1 , Xcon�

1 , . . . ,

Xcat�
M+1, Xcon�

M+1 )� unconditional on S, thus allowing imputation
without using the matching variables. These are analogous
to the models in Section 4 but involve a matched-set-specific
random effect, u.

The first is a restricted general location model. Assume
that for each matched set,

P(Xcat
1 = xcat

1 , . . . ,Xcat
M+1 = xcat

M+1 | D1 = 1, D2 = · · · = DM+1 = 0)

= exp{b(xcat
1 , . . . , xcat

M+1; ν) + τ�xcat
1 }∑

xcat
′

1 ,...,xcat
′

M+1
exp{b(xcat′

1 , . . . , xcat′
M+1; ν) + τ�xcat′

1 } (6)

with b(xcat
1 , . . . , xcat

M+1) =
M+1∑

j=1

b1(x
cat
j ; ν)

+
M∑

j=1

M+1∑

k=j+1

b2(x
cat
j , xcat

k ; ν) (7)

where b1(x
cat
j ; ν) includes a main effect of each element of

Xcat
j and an interaction between each pair of these elements,

and b2(x
cat
j , xcat

k ; ν) includes all pairwise interactions between
one element of Xcat

j and one element of Xcat
k . This allows

correlation between Xcat of members of the same matched
set. Also assume that for j = 1, . . . , M + 1 independently,

Xcon
j | D1 = 1, D2 = · · · = DM+1 = 0, Xcat

1 , Xcat
2 , . . . ,Xcat

M+1, u

∼ N(η + ξI(j = 1) + ρXcat
j + ψX̄

cat + u, �) (8)

and u | D1 = 1, D2 = · · · = DM+1

= 0, Xcat
1 , Xcat

2 , . . . ,Xcat
M+1 ∼ N(0, �) (9)

where X̄
cat = (M + 1)−1

∑M+1

j=1
Xcat

j . Note that ψ and �

allow correlation between one individual’s Xcon and the
Xcat and Xcon of other members of the same matched set.
In Web Appendix E, we show this model implies equa-
tion (2) holds with βcat = τ − ρ�(F − C)ξ and βcon = (F −
C)ξ, where C−1 = � + � − �(� + M�)−1M� and F = −(� +
M�)−1�C.

As in Section 4, we propose using FCS MI with conditional
models compatible with this joint model. In Web Appendix F,
we show that a compatible conditional model for a partially
observed element of Xcon

j is a linear regression of that element
on Xcat

j ,
∑

k �=j
Xcat

k ,
∑

k �=j
Xcon

k and all the remaining elements
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of Xcon
j . Likewise, a compatible conditional model for one of

the partially observed categorical variables making up Xcat
j is

a multinomial logistic regression of this categorical variable
on Xcon

j ,
∑

k �=j
Xcon

k ,
∑

k �=j
Xcat

k and those elements of Xcat
j

that are not dummy indicators for this categorical variable.
These conditional models are not the default options in MI
software, because some predictors in the regression are sums of
conditioning variables, e.g.,

∑
k �=j

Xcat
k . However, specification

of non-default conditional models is straightforward (see Web
Appendix H).

As with the FCS method in Section 4, this method is
asymptotically equivalent to joint model MI, but in finite sam-
ples may be inefficient. Our second proposed model for Xset

is a latent normal model with random effects (Carpenter and
Kenward, 2013). Like the latent normal model of Section 4,
this is not compatible with equation (2), but its use may
improve efficiency. The latent normal model is the same as
model (5), but with δLNS replaced by u and now conditioning
on all of D1, . . . , DM+1: for j = 1, . . . , M + 1 independently,

(Xcon�
j , Wcat�

j )� | D1 = 1, D2 = · · · = DM+1 = 0, u

∼ N(αLN + φLNDj + u, 	LN) (10)

where u is normally distributed with mean zero and unstruc-
tured variance given D1 = 1, D2 = · · · = DM+1 = 0. Again,
joint model MI can be done using REALCOM-MI or jomo.

As in Section 4, there is a normal version of this model. This
assumes (10) but with Wcat

j replaced by Xcat
j . Joint model MI

with this model can be done using the pan package of R.

6. Simulation Study

One thousand datasets were generated for each of 24 sce-
narios resulting from considering two sample sizes (N = 100
or 500 matched sets), two numbers of matching controls
(M = 1 or M = 4), three missingness mechanisms, and two
proportions of missing data. Each dataset was generated
using the model defined by expressions (3)–(4). Specifi-
cally, there were two matching variables, one binary (Scat)
and one continuous (Scon), and three covariates, one cate-
gorical (Xcat) and two continuous (XconA and XconB). We
assumed P(Scat = 1 | D = 1) = 0.6 and Scon | Scat, D = 1 ∼
N(0, 1). These could represent, for example, sex and stan-
dardized age. Among cases, the sex with greater risk would
be more common, while age might be approximately normal
if risk increases with age but total population size diminishes
due to all-cause mortality. We assumed logit P(Xcat = 1 |
Scat, Scon, D) = −2.5 + 0.5Scat + 0.5Scon + 0.75D (so about
10% of controls and 20% of cases have Xcat = 1), and
(XconA, XconB) given Xcat, Scat, Scon, D is bivariate nor-
mal with univariate marginal distributions N(0.5Xcat +
0.5Scat + 0.5Scon + 0.5D, 1) and covariance 0.5. From βcat =
λ − γ�	−1φ and βcon = 	−1φ, the true log ORs of Xcat, XconA,
and XconB are βcat = 5/12, βconA = 1/3, and βconB = 1/3.

Missingness was imposed on Xcat and XconA assuming
either missing completely at random (MCAR) or one of
two MAR mechanisms. For MCAR data, each individual’s
Xcat and XconA variables were independently missing with
probability pmiss. Two values, pmiss = 0.1 and pmiss = 0.25,
were considered. Thus, either 19 or 44% of individuals had

at least one missing variable. For the first MAR mecha-
nism (MAR-A), each individual’s Xcat and XconA variables
were independently missing with logit probability cmiss +
0.25(XconB + Scat + Scon + D). For the second (MAR-B), it
was cmiss + 0.25(XconB + Scat + Scon + D + XconBD). In both
cases, cmiss was chosen to give pmiss = 0.1 or pmiss = 0.25
missingness in each of Xcat and XconA.

Each dataset was analyzed using CLR with Xcat, XconA

and XconB as covariates. Missing data were handled in seven
ways: complete-case analysis; FCS MI using matching vari-
ables or matched set (using ice in Stata); latent normal MI
using matching variables or matched set (jomo in R); and
normal MI using matching variables (mi impute in Stata) or
matched set (pan in R). We used 25 imputed datasets when
pmiss = 0.1, and 50 when pmiss = 0.25. In addition, the com-
plete data were analyzed before imposing missingness on the
covariates.

Tables 1 and 2 show results for the MCAR mechanism with
1:1 matching (M = 1) and 1:4 matching (M = 4) when N =
500. The results from these scenarios also give a good indica-
tion of the general patterns observed for MAR-A, MAR-B and
N = 100 (see Web Tables 1–10). We shall focus on βcat and
βconA, since for βconB (the fully-observed covariate), differ-
ences between the three MI methods using matched variables
were small, as were differences between those using matched
set. To ease comparison of the six MI methods, Tables 3 and 4
show, for pmiss = 0.25, the bias, ratio of empirical SEs, ratio of
mean estimated SEs, and relative efficiency (i.e., ratio of mean
squared errors, MSE) of each method, averaged over the three
missingness mechanisms, separately for βcat and βconA, for
N = 100 and 500, and for M = 1 and M = 4. Unsurprisingly,
differences between methods were smaller when pmiss = 0.1;
we focus on pmiss = 0.25 below.

The two FCS methods are approximately unbiased when
N = 500 and usually when N = 100. Exceptions are when
N = 100 and M = 1, where the complete-data method is also
biased (with biases similar to those of FCS MI), and when
N = 100 and M = 4, where there is bias for βcat when using
matched set. Normal MI has some negative bias for βcat, espe-
cially when using matching variables (except when N = 100
and M = 1, where its negative bias cancels out the posi-
tive bias of the complete-data estimator). Latent normal MI
has some positive bias for βcat when M = 1; latent normal
MI using matched set also has negative bias for βconA. The
complete-case estimators are generally approximately unbi-
ased, but note that the estimator of βconB is severely biased
under MAR-B (Web Tables 2, 4, 7, and 10).

Empirical standard errors (SEs) from MI are almost always
smaller when using matching variables than when using
matched set, and negatively biased estimators tend to have
smaller SEs. For βcat, the SEs from FCS MI and latent normal
MI are usually similar (when using matched set with N = 100,
FCS MI has the smaller SE); the smallest SEs come from nor-
mal MI. For βconA, latent normal MI has the smallest SEs; the
SEs from normal MI are similar to those from FCS MI when
using matching variables and larger when using matched set.
These differences are less marked when M = 4.

Efficiency (mean square error, MSE) is a function of bias
and SE. For βcat, normal MI is most efficient, despite its
bias; FCS MI and latent normal MI are usually about equally
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Table 1
Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MCAR missingness mechanism.
“LOR” is mean estimated log odds ratio, “SE” is empirical standard error, “estSE” is mean estimated standard error,

“MSE” is mean-squared error ×1000, and “cv” is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333,
and 0.333 for Xcat, XconA, and XconB, respectively.

Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95
10% missing
Complete cases 0.431 0.264 0.256 70.0 96 0.337 0.100 0.102 10.1 96 0.340 0.103 0.102 10.6 96
Match var: FCS 0.429 0.224 0.219 50.2 94 0.335 0.083 0.087 6.92 96 0.338 0.085 0.084 7.17 94

Normal 0.410 0.214 0.218 45.7 96 0.336 0.083 0.087 6.85 96 0.339 0.084 0.083 7.16 95
Latent norm 0.435 0.223 0.218 50.0 95 0.330 0.081 0.087 6.63 96 0.340 0.084 0.084 7.12 94

Match set: FCS 0.429 0.225 0.219 51.0 95 0.334 0.084 0.087 7.05 96 0.338 0.085 0.084 7.23 94
Normal 0.420 0.221 0.223 49.0 96 0.340 0.086 0.089 7.44 96 0.335 0.086 0.084 7.34 95
Latent norm 0.437 0.226 0.220 51.6 95 0.320 0.082 0.087 6.83 96 0.340 0.085 0.084 7.35 95

25% missing
Complete cases 0.449 0.379 0.377 145 96 0.341 0.144 0.149 20.8 97 0.342 0.150 0.149 22.4 96
Match var: FCS 0.431 0.240 0.241 57.6 96 0.336 0.090 0.096 8.06 96 0.337 0.087 0.086 7.51 95

Normal 0.386 0.215 0.235 47.1 97 0.338 0.090 0.095 8.04 97 0.341 0.086 0.086 7.49 95
Latent norm 0.446 0.238 0.241 57.7 96 0.322 0.085 0.095 7.31 97 0.343 0.085 0.086 7.39 95

Match set: FCS 0.430 0.247 0.243 61.0 95 0.335 0.094 0.097 8.81 96 0.339 0.088 0.086 7.69 95
Normal 0.407 0.238 0.251 56.8 96 0.350 0.098 0.101 9.93 96 0.329 0.090 0.088 8.08 94
Latent norm 0.455 0.249 0.247 63.7 95 0.300 0.085 0.095 8.27 95 0.344 0.088 0.088 7.89 95

efficient, with neither uniformly better than the other. For
βconA, latent normal MI is more efficient than FCS and nor-
mal MI when using matching variables; FCS and normal MI
are equally efficient. When using matched set, FCS MI is more
efficient for βconA than normal MI; latent MI is more efficient
than FCS MI when M = 1, but is the least efficient of all the
methods when N = 500 and M = 4, where its bias dominates

its smaller SE. All MI methods are more efficient than the
complete-case analysis.

The MI methods show a tendency to slightly overestimate
SEs. Mostly, this is fairly mild, but is more severe for normal
MI with βcat when M = 1, and for latent normal MI with
βconA when M = 1 or 4. Thus, although normal and latent
normal MI are most efficient for βcat and βconA, respectively,

Table 2
Results from 1000 simulated datasets of N = 500 cases and M = 4 controls per case with MCAR missingness mechanism.
“LOR” is mean estimated log odds ratio, “SE” is empirical standard error, “estSE” is mean estimated standard error,

“MSE” is mean-squared error ×1000, and “cv” is coverage of 95% confidence interval. True log odds ratios are 0.417, 0.333,
and 0.333 for Xcat, XconA, and XconB, respectively.

Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.418 0.150 0.144 22.4 94 0.334 0.058 0.061 3.37 97 0.337 0.062 0.061 3.89 94
10% missing
Complete cases 0.419 0.179 0.169 32.1 94 0.333 0.069 0.071 4.72 96 0.338 0.073 0.071 5.38 94
Match var: FCS 0.418 0.158 0.153 25.1 95 0.333 0.062 0.065 3.82 97 0.337 0.064 0.062 4.07 94

Normal 0.407 0.154 0.152 23.8 96 0.335 0.062 0.064 3.82 96 0.339 0.064 0.062 4.06 94
Latent norm 0.424 0.158 0.153 25.1 94 0.329 0.061 0.065 3.69 97 0.339 0.063 0.062 4.05 94

Match set: FCS 0.415 0.159 0.153 25.4 94 0.332 0.062 0.065 3.80 96 0.338 0.064 0.062 4.08 94
Normal 0.411 0.157 0.154 24.7 95 0.336 0.062 0.065 3.89 97 0.337 0.064 0.062 4.08 94
Latent norm 0.424 0.159 0.153 25.2 95 0.320 0.060 0.065 3.83 97 0.340 0.064 0.062 4.15 94

25% missing
Complete cases 0.411 0.242 0.225 58.5 93 0.337 0.089 0.093 7.90 97 0.338 0.095 0.093 8.99 95
Match var: FCS 0.417 0.176 0.168 30.8 94 0.335 0.069 0.071 4.75 97 0.337 0.066 0.064 4.36 94

Normal 0.389 0.164 0.165 27.7 95 0.338 0.069 0.071 4.73 96 0.340 0.066 0.064 4.37 94
Latent norm 0.432 0.174 0.168 30.4 94 0.323 0.066 0.070 4.42 97 0.343 0.065 0.064 4.37 94

Match set: FCS 0.409 0.176 0.168 31.0 94 0.333 0.068 0.071 4.68 96 0.338 0.066 0.064 4.41 94
Normal 0.398 0.170 0.170 29.3 95 0.343 0.070 0.072 5.04 95 0.335 0.067 0.064 4.47 94
Latent norm 0.431 0.177 0.170 31.4 94 0.302 0.065 0.070 5.23 95 0.344 0.067 0.065 4.59 94
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Table 3
Biases (“bias”), ratios of empirical SEs (“ratio SE”), ratios of mean estimated SEs (“ratio empSE”), and relative

efficiencies (%, “rel. eff.”) of six MI methods when N = 500 and pmiss = 0.25. Ratios and relative efficiencies are calculated
relative to the corresponding complete-data estimators. Each reported ratio or relative efficiency is the average over three

ratios or relative efficiencies: one from each of the MCAR, MAR-A, and MAR-B scenarios. Reported biases are the signed
average absolute bias over these three scenarios.

βcat βconA

ratio ratio rel. ratio ratio rel.
bias SE estSE eff. bias SE estSE eff.

M=1
Complete data 0.010 1.000 1.000 100.0 0.003 1.000 1.000 100.0
Match var: FCS 0.014 1.136 1.188 77.4 0.002 1.142 1.161 76.7

Normal −0.046 1.018 1.156 92.2 0.006 1.137 1.157 77.2
Latent norm 0.026 1.126 1.183 78.1 −0.010 1.081 1.150 84.4

Match set: FCS 0.013 1.181 1.207 71.7 −0.002 1.196 1.184 70.0
Normal −0.015 1.132 1.245 77.9 0.014 1.251 1.223 62.7
Latent norm 0.035 1.187 1.220 69.7 −0.035 1.082 1.157 73.0

M=4
Complete data 0.001 1.000 1.000 100.0 0.001 1.000 1.000 100.0
Match var: FCS −0.001 1.195 1.200 70.0 0.002 1.188 1.172 70.8

Normal −0.051 1.108 1.171 73.9 0.005 1.184 1.169 70.9
Latent norm 0.010 1.177 1.195 72.0 −0.010 1.129 1.163 76.6

Matchset: FCS −0.006 1.220 1.210 67.3 −0.002 1.190 1.187 70.5
Normal −0.036 1.149 1.206 72.0 0.007 1.215 1.196 67.0
Latent norm 0.008 1.200 1.211 69.3 −0.034 1.126 1.168 62.4

Table 4
Biases (“bias”), ratios of empirical SEs (“ratio SE”), ratios of mean estimated SEs (“ratio empSE”), and relative

efficiencies (%, “rel. eff.”) of six MI methods when N = 100 and pmiss = 0.25. Ratios and relative efficiencies are calculated
relative to the corresponding complete-data estimators. Each reported ratio or relative efficiency is the average over three
ratios or relative efficiencies: one from each of the MCAR, MAR-A and MAR-B scenarios. Reported biases are the signed

average absolute bias over these three scenarios.

βcat βconA

ratio ratio rel. ratio ratio rel.
bias SE estSE eff. bias SE estSE eff.

M=1
Complete data 0.038 1.000 1.000 100.0 0.018 1.000 1.000 100.0
Match var: FCS 0.048 1.199 1.227 69.7 0.025 1.164 1.192 73.5

Normal −0.017 1.068 1.186 88.3 0.027 1.150 1.185 75.2
Latent norm 0.066 1.193 1.219 69.9 0.008 1.080 1.178 86.4

Match set: FCS 0.041 1.221 1.277 67.3 0.022 1.234 1.231 65.7
Normal 0.029 1.160 1.309 74.7 0.051 1.321 1.295 55.6
Latent norm 0.099 1.304 1.301 57.9 −0.013 1.085 1.203 85.3

M=4
Complete data −0.015 1.000 1.000 100.0 0.003 1.000 1.000 100.0
Match var: FCS −0.018 1.200 1.217 69.5 0.005 1.130 1.183 78.3

Normal −0.065 1.099 1.184 80.3 0.008 1.124 1.176 78.9
Latent norm −0.009 1.191 1.210 70.7 −0.008 1.073 1.172 86.6

Match set: FCS −0.037 1.157 1.213 74.3 −0.011 1.091 1.183 83.7
Normal −0.040 1.136 1.228 76.7 0.012 1.172 1.211 72.5
Latent norm −0.010 1.234 1.237 65.8 −0.026 1.079 1.185 83.6
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Table 5
Association between fibre intake and colerectal cancer

estimated from EPIC-Norfolk. Log odds ratio is for six-gram
per day increase in fibre intake, conditional on smoking,

education, social class, physical activity, height, weight, age,
alcohol intake, folate intake, intake of energy from fat and
non-fat, aspirin use, and the matching variables. Missing

data are handled by restriction to complete cases or by MI.

Method log OR SE 95% CI p-value

Complete cases −0.196 0.126 (−0.444, 0.052) 0.121
MI using matching variables:

FCS −0.176 0.104 (−0.380, 0.027) 0.090
Normal −0.177 0.104 (−0.380, 0.027) 0.088
Latent normal −0.176 0.104 (−0.380, 0.027) 0.089

MI using matched set:
FCS −0.175 0.104 (−0.378, 0.028) 0.092
Normal −0.181 0.104 (−0.384, 0.023) 0.082
Latent normal −0.174 0.104 (−0.377, 0.030) 0.094

this advantage is not apparent in the width of the estimated
confidence intervals. Indeed, the average estimated SEs
of the three MI methods using matching variables were
generally rather similar; the same was true of the methods
using matched set. Coverage of 95% confidence intervals was
between 93% and 97% for all methods.

We also performed two simulation studies using modified
data-generating mechanisms that make our imputation mod-
els misspecified. In the first, there was an interaction between
Scat and Scon; in the second, XconA and XconB were log-
normally distributed. See Web Appendix G and Web Tables
11–16 for details and results. Briefly, none of the MI methods
showed considerable bias for either of these data-generating
mechanisms, and all MI methods were much more efficient
than the complete-case analysis.

In summary, all the MI methods appear to work well. Using
matching variables is more efficient than using matched set.
If using matching variables, normal and latent normal MI
appear to be preferable to FCS MI, which is less efficient; nor-
mal MI is more efficient for βcat, but latent normal MI more
efficient for βconA. Of these, one might prefer latent normal
MI, because of the bias in βcat for normal MI. If using matched
set, FCS MI might be preferred when M = 4, on bias and effi-
ciency grounds. However, when M = 1 and using matched set,
no method appears better than any other.

7. Analysis of EPIC-Norfolk Data

Table 5 shows the estimated adjusted log OR for fibre intake
from the complete-case analysis. This analysis excludes all
matched sets in which the case had missing data, as well as
any controls with missing data. It uses 240 (75%) matched
sets consisting of 240 cases and 772 controls. Also shown are
the results of the three MI methods using matching variables,
including sex, age and date of diary completion as S in the
imputation model. The complete-case and MI analyses pro-
duce similar log OR estimates (differing by less than 20% of
an SE), but the latter are more efficient, because they use all
318 cases and 1272 controls i.e., 33% more matched sets, and
this is reflected by a 17% reduction in estimated SE.

MI using matching variables imputes missing values assum-
ing that age, sex, and time of diary completion have linear
and additive effects on the logit probability of disease.
Furthermore, the way that recruitment took place in the
EPIC-Norfolk cohort means that date of diary completion is
predictive of which GP surgery the individual was registered
with, and hence matching by the former tends to induce some
degree of matching by the latter. Treating date of diary com-
pletion as a continuous variable will not fully account for this.
For these two reasons, one might prefer MI using matched set,
or might wish to check that the results from the two methods
do not differ substantially.

Table 5 shows that the results from MI using matching
variables and MI using matched set are very similar, providing
some reassurance about the validity of both sets of results. In
this study, both approaches can be used, but had matching
been on GP practice itself, MI using matched set might have
been the only feasible option.

8. Discussion

We have described two broad MI approaches to the analysis
of matched case-control studies with missing values in covari-
ates, and three methods within each approach. One approach
involves parametric modeling of the association between the
matching variables and the partially observed covariates; the
other instead treats matched set as a random effect. Our
simulation results suggest that the first approach is prefer-
able when it can be done, as it is more efficient. However,
in studies where matching is on, e.g., family, GP practice or
postcode area of residence, or if data on the matching vari-
ables are not available to the analyst, the first approach is not
feasible and the second approach can be used instead. The
second approach might also be preferred if one were reluctant
to specify a form for association between matching variables
and covariates in the imputation model, because, for example,
there were several matching variables, including continuous
ones and potential interactions.

Of the three MI methods within each approach, FCS MI
based on a restricted general location model and joint model
MI using a multivariate normal distribution can be imple-
mented in many statistical packages, whereas joint model
MI using a latent normal distribution is currently limited
to R and the specialist software REALCOM-MI. All three
methods are easy to use, appear to work well, and are more
efficient than the complete-case analysis. They can all han-
dle continuous and nominal categorical covariates, multiple
partially-observed covariates, non-monotone missingness pat-
terns, and multiple controls per case. Computer commands to
implement the methods are given in Web Appendix H.

FCS MI has the theoretical appeal of being asymptotically
equivalent to joint model MI using an imputation model (the
restricted general location model) that is compatible with the
CLR analysis model. It nearly always gave the least-biased
estimates in simulations. However, when using matching vari-
ables, normal MI and latent normal MI were more efficient.
When using matched set, FCS MI was marginally better
than normal and latent normal MI for a 1:4 matched study
(M = 4); no method was obviously best or worst for 1:1
matching (M = 1). A drawback of FCS MI using matched set
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when M > 1 is that the estimates may depend on the arbi-
trary order chosen for the M controls in each matched set.
Any order produces valid imputations, but one could avoid
this dependence by randomly permuting indices of controls
within matched sets before generating each imputed dataset.
However, that is only likely to be worthwhile if the sample size
is small and there are a lot of missing data. Normal MI was,
in general, the most biased of the three methods, but even its
biases were fairly modest. A slight drawback of normal MI is
the need manually to post-process imputed values of categor-
ical variables, e.g., using adaptive rounding. None of the MI
methods was uniformly superior to the others in simulations,
and we regard use of any of them as entirely acceptable.

All methods can handle the situation where the number
of matched controls, M, varies between cases, although this
is slightly more complicated for FCS MI using matched set.
For this method, extra controls with completely missing data
would have to be added to those matched sets with fewer than
the maximum number of controls, before performing MI, and
then deleted again before analyzing the imputed datasets.

Another method, which merits further research, is joint
model MI using the restricted general location model. This
requires specialist Bayesian software and more advanced pro-
gramming skills, and the focus of this article is on methods
that are easy to implement in standard packages. Neverthe-
less, it would be worth investigating whether this method is
significantly more efficient than our FCS MI method based
on the same model. The mix package in R (Schafer, 1997)
may also be of interest. This uses a model similar to (3)–(4),
but additionally assumes the continuous part of S is normally
distributed given D, Xcat and the rest of S. The MI methods
considered in this article assume, like the CLR analysis model,
nothing about the distribution of the matching variables. Mix
cannot be used for MI using matched set.

Finally, we note that, as always with missing data methods,
it is important to consider the plausibility of the assump-
tion about the missing data mechanism. Often, the MAR
assumption can be made more plausible by including in the
imputation model additional variables that are associated
with the partially observed covariates.

9. Supplementary Materials

Web Appendices referenced in Sections 3–8, along with com-
puter code, are available with this paper at the Biometrics
website on Wiley Online Library.
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