188 research outputs found

    Manufacturing of glass ribbon reinforced transparent composites using the autoclave process

    Get PDF
    Clear transparent panels have many applications ranging from windows on an aircraft to protective safety guards on industrial equipment. Glass ribbon reinforced transparent composites are light weight, load bearing and have a high impact resistance. A transparent composite is based on the concept of matching the refractive index of the glass ribbon with that of a resin system. It is not necessary that the resin refractive index match the glass refractive index before the cure cycle, only that the refractive indexes match after curing. Transparent composites have a high impact resistance that would be mechanically ideal for aircraft windows and canopies. In the present synthesis of transparent composites, pre-impregnated tapes are used to manufacture parts using the autoclave process. The autoclave is a pressure vessel that has heaters and coolers to maintain a consistent temperature and pressure throughout the cure cycle. The cure cycle is comprised of a series of constant and varying temperature and pressure segments for specific time periods. The performance of the manufactured parts was demonstrated by conducting tensile, flexural and impact tests. The objective of this research is to manufacture a transparent panel that will have high impact resistance, be light in weight and be high in strength; not to sacrifice desirable characteristics to obtain an absolutely limpid panel. Future development of transparent composites will include the synthesis of curved shapes for aircraft canopies or helmets for astronauts --Abstract, page iii

    Myogenic specification of side population cells in skeletal muscle

    Get PDF
    Skeletal muscle contains myogenic progenitors called satellite cells and muscle-derived stem cells that have been suggested to be pluripotent. We further investigated the differentiation potential of muscle-derived stem cells and satellite cells to elucidate relationships between these two populations of cells. FACS® analysis of muscle side population (SP) cells, a fraction of muscle-derived stem cells, revealed expression of hematopoietic stem cell marker Sca-1 but did not reveal expression of any satellite cell markers. Muscle SP cells were greatly enriched for cells competent to form hematopoietic colonies. Moreover, muscle SP cells with hematopoietic potential were CD45 positive. However, muscle SP cells did not differentiate into myocytes in vitro. By contrast, satellite cells gave rise to myocytes but did not express Sca-1 or CD45 and never formed hematopoietic colonies. Importantly, muscle SP cells exhibited the potential to give rise to both myocytes and satellite cells after intramuscular transplantation. In addition, muscle SP cells underwent myogenic specification after co-culture with myoblasts. Co-culture with myoblasts or forced expression of MyoD also induced muscle differentiation of muscle SP cells prepared from mice lacking Pax7 gene, an essential gene for satellite cell development. Therefore, these data document that satellite cells and muscle-derived stem cells represent distinct populations and demonstrate that muscle-derived stem cells have the potential to give rise to myogenic cells via a myocyte-mediated inductive interaction

    Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis

    Get PDF
    We assessed viable Pax7−/− mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However, a small number of regenerated myofibers were detected, suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3+/MyoD+ myoblasts were recovered from Pax7−/− muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally, we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore, we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells

    Megf10 regulates the progression of the satellite cell myogenic program

    Get PDF
    We identify here the multiple epidermal growth factor repeat transmembrane protein Megf10 as a quiescent satellite cell marker that is also expressed in skeletal myoblasts but not in differentiated myofibers. Retroviral expression of Megf10 in myoblasts results in enhanced proliferation and inhibited differentiation. Infected myoblasts that fail to differentiate undergo cell cycle arrest and can reenter the cell cycle upon serum restimulation. Moreover, experimental modulations of Megf10 alter the expression levels of Pax7 and the myogenic regulatory factors. In contrast, Megf10 silencing in activated satellite cells on individual fibers or in cultured myoblasts results in a dramatic reduction in the cell number, caused by myogenin activation and precocious differentiation as well as a depletion of the self-renewing Pax7+/MyoD− population. Additionally, Megf10 silencing in MyoD−/− myoblasts results in down-regulation of Notch signaling components. We conclude that Megf10 represents a novel transmembrane protein that impinges on Notch signaling to regulate the satellite cell population balance between proliferation and differentiation

    Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron disease remains unclear. Leptin is an adipocyte-derived hormone that regulates whole-animal energy expenditure. Here, we report that placing mutant superoxide dismutase 1 (SOD1) mice in a leptin-deficient background improves energy homeostasis and slows disease progression. Leptin-deficient mutant SOD1 mice possess increased bodyweight and fat mass, as well as decreased energy expenditure. These observations coincide with enhanced survival, improved strength and decreased motor neuron loss. These results suggest that altering whole-body energy metabolism in mutant SOD1 mice can mitigate disease progression. We propose that manipulations that increase fat mass and reduce energy expenditure will be beneficial in the setting of motor neuron diseas

    Electronic data collection, management and analysis tools used for outbreak response in low- and middle-income countries: a systematic review and stakeholder survey

    Get PDF
    BACKGROUND: Use of electronic data collection, management and analysis tools to support outbreak response is limited, especially in low income countries. This can hamper timely decision-making during outbreak response. Identifying available tools and assessing their functions in the context of outbreak response would support appropriate selection and use, and likely more timely data-driven decision-making during outbreaks. METHODS: We conducted a systematic review and a stakeholder survey of the Global Outbreak Alert and Response Network and other partners to identify and describe the use of, and technical characteristics of, electronic data tools used for outbreak response in low- and middle-income countries. Databases included were MEDLINE, EMBASE, Global Health, Web of Science and CINAHL with publications related to tools for outbreak response included from January 2010-May 2020. Software tool websites of identified tools were also reviewed. Inclusion and exclusion criteria were applied and counts, and proportions of data obtained from the review or stakeholder survey were calculated. RESULTS: We identified 75 electronic tools including for data collection (33/75), management (13/75) and analysis (49/75) based on data from the review and survey. Twenty-eight tools integrated all three functionalities upon collection of additional information from the tool developer websites. The majority were open source, capable of offline data collection and data visualisation. EpiInfo, KoBoCollect and Open Data Kit had the broadest use, including for health promotion, infection prevention and control, and surveillance data capture. Survey participants highlighted harmonisation of data tools as a key challenge in outbreaks and the need for preparedness through training front-line responders on data tools. In partnership with the Global Health Network, we created an online interactive decision-making tool using data derived from the survey and review. CONCLUSIONS: Many electronic tools are available for data -collection, -management and -analysis in outbreak response, but appropriate tool selection depends on knowledge of tools' functionalities and capabilities. The online decision-making tool created to assist selection of the most appropriate tool(s) for outbreak response helps by matching requirements with functionality. Applying the tool together with harmonisation of data formats, and training of front-line responders outside of epidemic periods can support more timely data-driven decision making in outbreaks

    Activation of JNK1 contributes to dystrophic muscle pathogenesis

    Get PDF
    AbstractDuchenne Muscular Dystrophy (DMD) originates from deleterious mutations in the dystrophin gene, with a complete loss of the protein product [1, 2]. Subsequently, the disease is manifested in severe striated muscle wasting and death in early adulthood [3]. Dystrophin provides a structural base for the assembly of an integral membrane protein complex [4]. As such, dystrophin deficiency leads to an altered mechanical integrity of the myofiber and a predisposition to contraction-induced damage [5–7]. However, the development of myofiber degeneration prior to an observed mechanical defect has been documented in various dystrophic models [8, 9]. Although activation of a detrimental signal transduction pathway has been suggested as a probable cause, a specific cellular cascade has yet to be defined. Here, it is shown that murine models of DMD displayed a muscle-specific activation of JNK1. Independent activation of JNK1 resulted in defects in myotube viability and integrity in vitro, similar to a dystrophic phenotype. In addition, direct muscle injection of an adenoviral construct containing the JNK1 inhibitory protein, JIP1, dramatically attenuated the progression of dystrophic myofiber destruction. Taken together, these results suggest that a JNK1-mediated signal cascade is a conserved feature of dystrophic muscle and contributes to the progression of the disease pathogenesis

    MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    Get PDF
    SummaryBrown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3′UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity
    corecore