
1278 Brief Communication

Activation of JNK1 contributes to dystrophic muscle pathogenesis
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Duchenne Muscular Dystrophy (DMD) originates Results and discussion
Previously, we have shown that activation of MAPK path-from deleterious mutations in the dystrophin gene,

with a complete loss of the protein product [1, 2]. ways is associated with the evolving cellular milieu of
the dystrophic myocardium [10, 11]. Therefore, MAPKSubsequently, the disease is manifested in severe

striated muscle wasting and death in early adulthood phosphorylation/activity status was assessed in cardiac and
skeletal muscle lysates collected from control mice and[3]. Dystrophin provides a structural base for the

assembly of an integral membrane protein complex two murine dystrophic models, the mdx and mdx:
MyoD�/� strains (Figure 1). The selection of both the[4]. As such, dystrophin deficiency leads to an

altered mechanical integrity of the myofiber and a mdx (murine genetic equivalent of DMD) and mdx:
MyoD�/� strain provided a gradation in the dystrophicpredisposition to contraction-induced damage

[5–7]. However, the development of myofiber phenotype for these analyses (the loss of MyoD results
in an inability to effectively repair damaged skeletal mus-degeneration prior to an observed mechanical

defect has been documented in various dystrophic cle; as such, the mdx:MyoD�/� strain displays a more
pronounced dystrophy) [12]. Moreover, the cumulativemodels [8, 9]. Although activation of a detrimental

signal transduction pathway has been suggested as damage observed in mdx:MyoD�/� skeletal muscle is also
concurrent to a progressive cardiac dystrophy that is nota probable cause, a specific cellular cascade has

yet to be defined. Here, it is shown that murine present in the mdx mouse [10]. Altered phosphorylation
of the stress-activated MAPK JNK1 (p54 isoform) wasmodels of DMD displayed a muscle-specific

activation of JNK1. Independent activation of JNK1 evident in immunoprecipitated (IPed) lysates derived
from dystrophicmuscle tissue, including cardiac and hind-resulted in defects in myotube viability and
limb skeletal muscle (Figure 1a); furthermore, JNK1integrity in vitro, similar to a dystrophic phenotype.
phosphorylation was not increased in tissues derived fromIn addition, direct muscle injection of an adenoviral
the MyoD�/� parent strain [12] (data not shown). In addi-construct containing the JNK1 inhibitory protein,
tion, a longer exposure of the same IP/Western revealsJIP1, dramatically attenuated the progression of
evidence of the phosphorylated p46 isoform in the lysatesdystrophic myofiber destruction. Taken together,
with the greatest damage (similar to the pattern observedthese results suggest that a JNK1-mediated signal
with p54). Unlike JNK1, the phosphorylation of ERK2cascade is a conserved feature of dystrophic muscle
and p38 was not dramatically altered (Figure 1b,c).and contributes to the progression of the disease

pathogenesis.
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Figure 1

Constitutive activation of JNK1 in dystrophic
heart and skeletal muscle. (a) Immunoblot
analysis revealed that JNK1 phosphorylation
was altered in mdx skeletal muscle and in
both mdx:MyoD�/� heart and skeletal muscle.
(b) Changes in ERK1/ERK2 mobility did not
correspond to the changes observed with
JNK1. Levels in both mdx:MyoD�/� heart and
skeletal muscle remain low. (c) Western blot
analysis of skeletal muscle using an anti-p38
antibody revealed no change in p38 migration/
phosphorylation. (d) Immunoblots carried out
with a phosphospecific anti-JNK1 antibody
indicated a much higher level of activated
JNK1 in mdx:MyoD�/� double mutants than in
either wild-type or mdx skeletal muscle. (e)
Western blots of mouse diaphragm muscle
probed with a phosphospecific JNK1
antibody. Increased levels of JNK1 are evident
in both Dp71 and mdx dystrophin mutants.
(f) Wild-type tibialis muscle immunostained for
phosphospecific JNK1 expression. No
staining was evident. (g) Sections from
mdx:MyoD�/� tibialis anterior muscle
immunostained for phosphospecific JNK1
expression. Staining is evident in nuclei. The
counterstain in both cases was eosin Y.

To determine whether elevated JNK1 activity induced pression/JNK1 activation led to a decrease in myotube
integrity (Figure 2a–h). Specifically, in C2C12 myoblasta dystrophic muscle phenotype, C2C12 skeletal muscle

myoblasts and H9C2 cardiac myoblasts were stably trans- clones with high levels of MKK7 expression/JNK activity,
the total number ofmyotubes decreased as the differentia-fected with the JNK1-specific activating kinase, MKK7

[14, 15]. Stable transformants were then categorized by tion program proceeded. The MF-20-positive myocyte
population declined from�30% at 3 days postdifferentia-the level of MKK7 expression and JNK1 activity/phos-

phorylation. Initial assessments revealed that the growth tion to less than 8% at 5 days postdifferentiation. This is
in stark contrast to wild-type and low-expressing cell lineskinetics and viability of all selected cell lines remained

unchanged. Moreover, both myotube formation and dif- that increase from �35% to �60% MF-20-positive cells
over the same time course. This temporal decline in myo-ferentiation were readily apparent within 3 days following

serum withdrawal in all C2C12 and H9C2 clones exam- tube integrity was preceded by an increased vacuolization
and formation of picnotic nuclei (Figure 2a,b). Moreover,ined (Figure 2a). Despite the neutral effect on replicating

myoblasts and early myotube formation, MKK7 overex- the severity of the myotube phenotype in both C2C12
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Figure 2 and H9C2 clones was proportional to the level of JNK
activation, i.e., myotube viability decreased as the level
of MKK7 expression/JNK activity increased (Figure 2c–h;
Figure 2i documents JNK1 activity in the various C2C12
stable cell lines overexpressing MKK7).

In order to assess the role of JNK1-mediated myofiber
damage in vivo, we have employed the specific JNK in-
hibitor JIP1 (JNK interacting protein). JIP1 is a cytosol-
restricted scaffolding protein that has been shown to pre-
vent JNK1 activation via sequestration of JNK1 and its
immediate upstream effector, MKK-7 [16]. JIP1 is highly
specific for JNK1 and does not interact with other JNK
family members or with other members of the JNK signal
cascade [17]. An adenoviral construct containing JIP
cDNA flanked by FLAG and GFP tags was injected into
tibialis anterior muscles of 8-week-old mdx:MyoD�/�

mice. Previous in vitro experiments using cultured sympa-
thetic neurons showed that the adenoviral construct pos-
sessed excellent infectivity (G. Walsh, F. Miller, unpub-
lished data). Furthermore, both JIP and GFP were
detected onWestern blots of lysates derived from infected
cells (data not shown). Mice were sacrificed 3 weeks after
viral introduction, and sectioned muscles were analyzed
for the presence of GFP/JIP. In addition, GFP-positive
myofiber diameters and overall health were compared to
uninfected fibers within the same section and to unin-
jected contralateral controls. Animals injected with adeno-
virus encoding GFP alone served as an alternate control.
In general, infected fibers appeared healthier and more
robust than adjacent uninfected fibers (Figure 3a–d) or
GFP controls (Figure 3f). While uninfected myofibers
often appeared vacuolated and in various stages of degen-
eration, the integrity of JIP adenovirus-infected fibers was
maintained, exhibiting a phenotype reminiscent of that
observed in wild-type tissues. In addition, the diameters
of JIP-infected myofibers were between 15% and 35%
larger (paired t test, p � 0.05) than uninfected myofibers
(Figure 3g). This was especially striking in areas of vari-
able adenoviral infection, with robust JIP overexpressing

The effects of JNK1 activation in C2C12 skeletal myoblasts and H9C2 fibers interspersed with much smaller, degenerate fibers
cardiac myoblasts stably transfected with the JNK1-specific activator (Figure 3a–e). Contralateral controls exhibited no fluores-
MKK7. (a,b) Temporal decline in myotube number and viability during

cence above background levels. No significant differencedifferentiation of MKK7:high JNK1 activity C2C12 cell lines ([a] 3
in fiber diameter was noted in animals injected with GFPdays differentiation; [b] 5 days differentiation). Disrupted myotubes

and vacuolization are evident. (c) Wild-type C2C12 cells exhibited normal alone (Figure 3h).
myotube formation (as demonstrated by immunostaining for striated
muscle-specific myosin heavy chain [MF-20]). While some
differentiation was evident with (d) low and (e) medium MKK7 To delineate the mechanism by which JNK1 impaired
expression, (f) high levels of MKK7 expression/JNK activity in C2C12 myofiber integrity, we sought to identify corresponding
myocytes led to a decrease in myotube integrity and viability. (g,h) targets for this kinase during the progression of dystrophicH9C2 cells likewise showed a similar reduction in myotube viability

muscle pathogenesis. Preliminary results have shown thatand MF-20 immunostaining with increased expression of MKK7. (i)
Whole-cell lysates derived from C2C12 cells expressing differential JNK1 activation in dystrophicmuscle leads to an increased
levels of MKK7. Lysates were subjected to immunoprecipitation with interaction with a member of the NF-AT transcription
JNK1 antibody, followed by an in vitro kinase assay using MBP as factor family NF-ATc1. In turn, this interaction resultsa substrate. The control was lysate-derived from untransfected, wild-

in the nuclear exclusion of the transcription factor in dys-type C2C12 cells. MBP phosphorylation increases as the level of
expression increases. trophic muscle (See Supplementary material available

with this article online). Of interest, NF-AT transcription
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Figure 3 factors have been described as key regulatory proteins for
hypertrophic growth of both cardiac and skeletal muscle
[18–20]. In addition, we have observed changes in gene
expression coincident to JNK1 activation, which may ac-
celerate the loss of myofiber integrity, i.e., JNK1-depen-
dent upregulation of proapoptotic neuronal genes (See
Supplementarymaterial). Therefore, these results suggest
that JNK1 activation may elicit myofiber destruction
through multiple avenues.

Taken together, our results support a model in which the
progression of dystrophic muscle pathogenesis is in part
dependent upon JNK1 activation. The activation of JNK1
in dystrophic muscle may result from an intrinsic loss of
the dystrophin protein and/or the cognate binding part-
ners. Specifically, components of the dystrophin dystro-
glycan protein complex (DGC) have been shown to retain
signaling molecules such as microtubule-associated ser-
ine/threonine kinase (MAST) and syntrophin-associated
serine/threonine kinase (SAST) [21]. Therefore, the fail-
ure to retain these kinases in a membrane-bound DGC
may provide a precipitating signal for the activation of
JNK1 in a dystrophic muscle. Alternatively, JNK1 activa-
tion may originate as a secondary consequence of dystro-
phic myofiber destabilization. For example, disruption of
the cytoskeleton (a hallmark of a dystrophic myofiber) in
nonmuscle cells leads to JNK1 activation, followed by
a requisite decline in cellular viability [22, 23]. Indeed,
consideration of these issues raises the possibility that
JNK1 activation may not be the sole arbiter of signal-
associated myofiber destruction. Nevertheless, and de-
spite the potential for signal promiscuity, the data suggest
that JNK1 activation is a conserved characteristic of the
dystrophic muscle phenotype.

Supplementary material
Supplementary material containing the materials and methods section
and information concerning JNK1 targets and interactions as well as
gene expression profiles associated with JNK1 activation is available at
http://images.cellpress.com/supmat/supmatin.htm.
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