27 research outputs found

    Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of microglia is a part of the inflammatory response in neurodegenerative diseases but its role in the pathophysiology of these diseases is still unclear. The osteopetrotic (op/op) mouse lacks colony-stimulating factor-1 (CSF-1) and thus has a deficiency in microglia and macrophages. Prior reports have demonstrated that op/op mice deposit amyloid β (Aβ) plaques, similar to those found in Alzheimer's disease. The purpose of these studies was to confirm this and to determine if the lack of CSF-1 affects the development of dopaminergic neurons and the expression of CD200, a known microglial inhibitory protein.</p> <p>Method</p> <p>We examined the central nervous system of op/op mice at 30 days, 60 days and 7 months of age and wildtype littermates at 30 days using immunohistochemistry and histochemistry.</p> <p>Results</p> <p>We found a decrease in the number of microglia in 1 month-old op/op mice compared to wildtype (WT) littermates as measured by CD11b, CD45, CD32/16, CD68, CD204 and F4/80 immunoreactivity. Aβ plaques were not detected, while the number of dopaminergic neurons appeared normal. The expression of CD200 appeared to be normal, but there appeared to be a lower expression in the substantia nigra.</p> <p>Conclusion</p> <p>In contrast to a prior report we did not detect Aβ deposition in the central nervous system of op/op mice at 30 days, 60 days or 7 months of age and there was a normal number of dopaminergic neurons. This indicates that op/op mice may be useful to examine the effects of microglia on neurodegenerative disease progression by breeding them to different transgenic mouse models. In addition, the lack of CSF-1 does not appear to affect CD200 expression by neurons but we did note a decrease in the substantia nigra of op/op and WT mice, suggesting that this may be a mechanism by which microglia control may be attenuated in this specific area during Parkinson's disease.</p

    Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is a common finding in chronic inflammatory diseases; however, its role in multiple sclerosis (MS) is unclear. Central nervous system lesions from both MS and experimental autoimmune encephalomyelitis (EAE), the animal model of MS, contain T cells, macrophages and activated glia, which can produce pro-angiogenic factors. Previous EAE studies have demonstrated an increase in blood vessels, but differences between the different phases of disease have not been reported. Therefore we examined angiogenic promoting factors in MS and EAE lesions to determine if there were changes in blood vessel density at different stages of EAE.</p> <p>Methods</p> <p>In this series of experiments we used a combination of vascular casting, VEGF ELISA and immunohistochemistry to examine angiogenesis in experimental autoimmune encephalomyelitis (EAE). Using immunohistochemistry we also examined chronic active MS lesions for angiogenic factors.</p> <p>Results</p> <p>Vascular casting and histological examination of the spinal cord and brain of rats with EAE demonstrated that the density of patent blood vessels increased in the lumbar spinal cord during the relapse phase of the disease (p < 0.05). We found an increased expression of VEGF by inflammatory cells and a decrease in the recently described angiogenesis inhibitor meteorin. Examination of chronic active human MS tissues demonstrated glial expression of VEGF and glial and blood vessel expression of the pro-angiogenic receptor VEGFR2. There was a decreased expression of VEGFR1 in the lesions compared to normal white matter.</p> <p>Conclusions</p> <p>These findings reveal that angiogenesis is intimately involved in the progression of EAE and may have a role in MS.</p

    A Potent and Selective S1P1 Antagonist with Efficacy in Experimental Autoimmune Encephalomyelitis

    Get PDF
    SummaryLymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P1), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P1 receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P1 antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing. NIBR-0213 showed comparable therapeutic efficacy to fingolimod in experimental autoimmune encephalomyelitis (EAE), a model of human MS. These data provide convincing evidence that S1P1 antagonists are effective in EAE. In addition, the profile of NIBR-0213 makes it an attractive candidate to further study the consequences of S1P1 receptor antagonism and to differentiate the effects from those of S1P1 agonists

    A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas

    Get PDF
    Epidemiologic and preclinical data suggest that higher intake and serum levels of vitamin D and higher intake of calcium reduce the risk of colorectal neoplasia. To further study the chemopreventive potential of these nutrients, we conducted a randomized, double-blind, placebo-controlled trial of supplementation with vitamin D, calcium, or both for the prevention of colorectal adenomas

    Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons"</p><p>http://www.jneuroinflammation.com/content/4/1/31</p><p>Journal of Neuroinflammation 2007;4():31-31.</p><p>Published online 20 Dec 2007</p><p>PMCID:PMC2234402.</p><p></p> of age. There is wide spread staining found throughout the neuropil of the hippocampus except the CA regions and dentate gyrus. There was less CD200 immunoreactivity in the substantia nigra of both WT (C) and op/op mice (D). CA1- field CA1 of hippocampus, CC- corpus callosum, DG- dentate gyrus, SNR- substantia nigra, reticular, SNC- substantia nigra, compact Scale bar – 100 μm

    Cryosections from 30 day old op/op, wildtype and 12 month old APP-tg mice were examined using commercially available polyclonal antibodies for Aβ40 and Aβ42

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons"</p><p>http://www.jneuroinflammation.com/content/4/1/31</p><p>Journal of Neuroinflammation 2007;4():31-31.</p><p>Published online 20 Dec 2007</p><p>PMCID:PMC2234402.</p><p></p> There was no Aβ40 immunoreactivity in op/op (A), wildtype (B) mice, whilst the APP-tg (C) mouse section showed some dense plaques. The Aβ42 specific antibody demonstrated a similar finding with op/op (D) and wildtype (E) mice having no plaques, whilst APP-tg (F) mice showed clear labeling of plaques. scale bar – 500 μm
    corecore