9 research outputs found

    Long-term prospects for the environmental profile of advanced sugar cane ethanol

    Get PDF
    This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.Industrial Ecolog

    Integrated Production Of Sugarcane Ethanol And Soybean Biodiesel: Environmental And Economic Implications Of Fossil Diesel Displacement

    No full text
    The sugarcane industry in Brazil has been considered promising for the production of advanced fuels and bio-based products. However, the sugarcane crop requires high volumes of fossil fuel for cultivation and transport. The use of biodiesel as a diesel substitute could reduce the environmental burdens associated with this high consumption. This work performed a stochastic evaluation of the environmental and economic implications of the integrated production of sugarcane bioethanol and soybean biodiesel, in comparison with the traditional sugarcane-to-ethanol process. The analysis was focused on the states of Goiás, Mato Grosso and São Paulo, where this integration would be particularly attractive. The environmental aspects addressed were the fossil energy use and the GHG emissions in a cradle-to-gate approach. The economic analysis comprised the evaluation of the net present value of an incremental cash flow generated by the soybean production and by the adjacent plants of oil extraction and biodiesel. Results indicate that the integrated system is likely to improve the ethanol environmental performance, especially with regard to the fossil energy use. The integration is economically feasible but highly uncertain; however, it could be significantly improved through fiscal incentives to biodiesel producers, founded on the reduction of fossil energy use and on improvements in logistics. In addition, the proposed model may also assist in the design of other integrated systems applied to the sugarcane sector in Brazil.8711701179Cherubini, F., The biorefinery concept: Using biomass instead of oil for producing energy and chemicals (2010) Energy Convers Manage, 51, pp. 1412-1421Souza, S.P., De Ávila, M.T., Pacca, S., Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production (2012) Biomass Bioenergy, 44, pp. 70-79Ometto, A.R., Ramos, P.A.R., Lombardi, G., The benefits of a Brazilian agro-industrial symbiosis system and the strategies to make it happen (2007) J Clean Prod, 15, pp. 1253-1258Lombardi, G., Ramos, P.A.R., Ometto, A.R., Corsini, R., Ones, O.P., Cárdenas, L.Z., A comparative study of GERIPA ethanol with other fuels (2009) Rev Ing e Invest, 29, pp. 77-80Rabelo, S.C., Carrere, H., Maciel Filho, R., Costa, A.C., Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept (2011) Bioresour Technol, 102, pp. 7887-7895Grisi, E.F., Yusta, J.M., Khodr, H.M., A short-term scheduling for the optimal operation of biorefineries (2011) Energy Convers Manage, 52, pp. 447-456Seabra, J.E.A., Macedo, I.C., Chum, H.L., Faroni, C.E., Sarto, C.A., Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use (2011) Biofuels Bioprod Biorefining, 5, pp. 519-532(2013) Biocombustíveis, Biodiesel: Boletim Mensal Do Biodiesel, , ANP Jan-Dez 2012 [Biofuels, Biodiesel: Monthly bulletin of biodiesel, Jan-Dec 2012]. Brasília: Agência Nacional de Petróleo, Gás Natural e Biocombustíveis [Brazilian National Agency of Petroleum, Natural Gas and Biofuels]Oliverio, J.L., Barreira, S.T., Rangel, S.C.P., Integrated biodiesel production in barralcool sugar and alcohol mill (2007) Int Sugar J, 109, p. 12Souza, S.P., Seabra, J.E.A., Environmental benefits of the integrated production of ethanol and biodiesel (2013) Appl Energy, 102, pp. 5-12Fazal, M.A., Haseeb, A.S.M.A., Masjuki, H.H., Biodiesel feasibility study: An evaluation of material compatibilityPerformanceemission and engine durability (2011) Renew Sustain Energy Rev, 15, pp. 1314-1324(2006) Environmental Management - Life Cycle Assessment: Principles and Framework, , ISO 14040(2006) Environmental Management - Life Cycle Assessment: Requirements and Guidelines, , ISO 14044(2007) Climate Change 2007: The Physical Science Basis: Contribution of Working Group i to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, , Cambridge University Press New YorkIPCC, Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Prepared by the national greenhouse gas inventories programme (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, , Japan: IGESSoares, P., (2014) Interview Regarding the Actual Outlook of the Biodiesel Sector in Brazil(2006) BNDES Workshop Invest, , Implementation of biodiesel plants Biodiesel, Rio de Janeiro: BNDESIMEA, (2012) Preços da Soja e da Torta [Meal and Soybean Prices], , Cuiabá, MT: Instituto Mato Grossense de Economia Agropecuária [Mato Grossense Institute of Agricultural Economics](2014) Indicadores de Preços Médios - Glicerina Loira [Average Prices Index - Glycerin], , UFV Aboissa/Centro de Referência da Cadeia de Biocombustíveis para a Agricultura Familiar, UFVANP, (2013) Preço Dos Combustíveis [Fuel Prices], , Sistema de Levantamento de Preços [Price Survey System]. Brasília: Brazilian National Agency of Petroleum, Natural Gas and BiofuelsIMEA, (2012) Custo de Produção Soja - Safra 2011/12 [Soybean Cost Production - 2011/12 Crop Season], , Mato Grosso: Instituto Mato Grossense de Economia Agropecuária [Mato Grossense Institute of Agricultural Economics]SEFAZ, Regulamento Do ICMS [ICMS Regulation]. Título III - Da Obrigação Principal [Title III - About the Main Obligation], , Capítulo II: do cálculo dos impostos [Chapter II: about the tax calculation] Seção II: das alíquotas [Section II: about the aliquots] n.d(2002) Handbook for Integrating Risk Analysis in the Economic Analysis of Projects, , ADB Manila: Asian Development Bank(2013) Brazilian Energy Balance 2013, Year 2012, , Brazilian Energy Research Office Rio de JaneiroCherubini, F., Jungmeier, G., LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass (2009) Int J Life Cycle Assess, 15, pp. 53-66Cherubini, F., Ulgiati, S., Crop residues as raw materials for biorefinery systems - A LCA case study (2010) Appl Energy, 87, pp. 47-57Souza, S.P., Gopal, A., Seabra, J.E.A., Life cycle environmental benefits of a cane-algae biorefinery design (2013) 3rd Int. Conf. Algal Biomass Biofuels Bioprod, 1. , Toronto, CanadaKim, S., Dale, B.E., Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel (2005) Biomass Bioenergy, 29, pp. 426-439Rathmann, R., Szklo, A., Schaeffer, R., Targets and results of the Brazilian biodiesel incentive program - Has it reached the promised land? (2012) Appl Energy, 97, pp. 91-100MDIC, (2012) Brazilian Importation, , Brasília: Ministry of Development, Industry, and TradeLeung, D.Y.C., Wu, X., Leung, M.K.H., A review on biodiesel production using catalyzed transesterification (2010) Appl Energy, 87, pp. 1083-1095CONAB, (2013) Brazilian Crop Assessment: Sugarcane, , crop 2013/2014, Second Estimate. Brasília: National Food Supply CompanyKokossis, A.C., Yang, A., On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries (2010) Comput Chem Eng, 34, pp. 1397-1405MME, (2007) Plano Nacional de Energia 2030 [2030 Energy National Plan], , Brasília: Ministry of Mines and Energy - MME, Brazilian Energy Research Company EPE(2013) Boletim Mensal Dos Combustíveis Renováveis [Monthly Report on Renewable Fuels], , MME Brasília: Ministério de Minas e Energia [Ministry of Mines and Energy]Hassuani, S.J., Leal, M.R.L.V., Macedo, I.C., (2005) Biomass Power Generation: Sugar Cane Bagasse and Trash, , Piracicaba, SP, Brazil: United Nations Development Programme (UNDP) and Sugarcane Technology Center (CTC)Capaz, R., (2009) Estudo Do Desempenho Energético da Produção de Biocombustíveis: Aspectos Metodológicos e Estudos de Caso [Energy Performance of Biofuel Production: Methodological Aspects and Case Studies], , Thesis. Federal University of ItajubaDias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Second generation ethanol in Brazil: Can it compete with electricity production? (2011) Bioresour Technol, 102, pp. 8964-8971Cavalett, O., Junqueira, T.L., Dias, M.O.S., Jesus, C.D.F., Mantelatto, P.E., Cunha, M.P., Environmental and economic assessment of sugarcane first generation biorefineries in Brazil (2012) Clean Technol Environ Policy, 14, pp. 399-410Mourad, A.L., Walter, A., The energy balance of soybean biodiesel in Brazil: A case study (2011) Biofuels Bioprod Biorefining, 5, pp. 185-197Ferrari, R.A., Oliveira Da, S., V., Scabio, A., (2005) Biodiesel from Soybean: Characterization and Consumption in An Energy Generator, 28, pp. 19-23. , Quím NovaCONAB, (2011) Brazilian Crop Assessment: Grains 2011/2012, , First Estimate. Brasília: National Food Supply Compan

    Mitigation Of Ghg Emissions Using Sugarcane Bioethanol

    No full text
    [No abstract available]96112Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Lukas, J., Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for maize stover (2002) Technical report, , TP-510-32438, NREL, Golden, CO, USAAmaral, W.A.N., Environmental sustainability of sugarcane ethanol in Brazil (2008), pp. 113-138. , P. Zuurbier and J. van de Vooren, Sugarcane ethanol, Wageningen Academic Publishers, Wageningen, the NetherlandsCarvalho, E.P., Etanol como Alternativa Energética (2007) UNICA: presentation to the Casa Civil, , Presidência da República, Brasília, BrazilCenários (oferta e demanda) para o setor de cana de açúcar (2007) CEPEA (Internal Report), , CEPEA, Esalq, Piracicaba, BrazilAcompanhamento da safra Brasileira: Cana de Açúcar (2008) Companhia Nacional de Abastecimento, , CONAB, MAPA, Brasilia, BrazilControle mútuo agrícola anual-safra 2005/2006 (2006) Centro de Tecnologia Canavieira, p. 126. , CTC, Piracicaba, Brazil, anexosTechnical information provided by scientists and engineers to I Macedo and J Seabra (2006), CTC, Piracicaba: Sugarcane Technology Centre, BrazilPlano Nacional de Energia 2030 (2007) Empresa de Planejamento Energético, , EPE, MME, Brazil(2005), http://www.fao.org/faostat, Food and Agriculture Organization, U.N. Statistical Databases, Agriculture, FAOGnansounou, E., Panichelli, L., Dauriat, A., Villegas, J.D., Accounting for indirect land-use changes in GHG balances of biofuels: review of current approaches (2008), École Polytechnique Fédérale de Lausanne, Working Paper 437.101Hassuani, S.J., Leal, M.R.L.V., Macedo, I.C., Biomass power generation: sugarcane bagasse and trash (2005) Série Caminhos para Sustentabilidade, , Piracicaba: PNUD-CTC, BrazilIndicadores Agropecuários 2005. Instituto Brasileiro de Geografia e Estatistica (2005), http://www.ibge.org.br, IBGEProdução Agrícola Municipal (2006), 33. , http://www.ibge.org.br, IBGE, Instituto Brasileiro de Geografia e EstatisticaAlternative Energy Scenarios (2006) World Energy Outlook 2006, , IEA, International Energy AgencyIPCC guidelines for national greenhouse gas inventories, Prepared by the National Greenhouse Gas Inventories Programme (2006), IPCC, H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe, Japan: IGESMacedo, I.C., Sugarcane's Energy-Twelve studies on Brazilian sugarcane agribusiness and its sustainability (2005) São Paulo: Berlendis & Vertecchia: UNICA, , BrazilMacedo, I.C., GHG mitigation and cost analyses for expanded production and use of fuel ethanol in Brazil (2008) Final Report, , prepared for Center for Clean Air Policy-CCAP. Washington, USAMacedo, I.C., Seabra, J.E.A., Silva, J.E.A.R., Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020 (2008) Biomass and Bioenergy, 32, pp. 582-595Projeções do Agronegócio-Mundo e Brasil, 2006/07 a 2017/18 (2007) Ministério da Agricultura, Pecuária e Abastecimento (MAPA), , MAPA, Assessoria de Gestão Estratégica, BrazilNassar, Sustainability considerations for ethanol (2008) Food, Fuel and Forests: A Seminar in Climate Change, Agriculture and Trade, , Bogor, IndonesiaNassar, A.M., Rudorff, B.F.T., Antoniazzi, L.B., De Aguiar, A.D., Bacchi, M.R.P., Adami, M., Prospects of the sugarcane expansion in Brazil: impacts on direct and indirect land use changes (2008), pp. 63-93. , P. Zuurbier and J. van de Vooren, Sugarcane ethanol, Wageningen Academic Publishers, Wageningen, the NetherlandsSeabra, J.E.A., Avaliação técnico-econômica de opções para o aproveitamento integral da biomassa de cana no Brasil (2008), p. 273. , Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, PhD ThesisScolari, D., Produção Agricola Mundial: o potencial do Brasil (2006) Embrapa (Empresa Brasileira de Pesquisa Agopecuária), , Brasilia, BrazilFrequently asked questions about the Brazilian sugarcane industry (2008) UNICA, , UNICA, S Paulo, Brazi

    Life Cycle Assessment Of Biofuels From An Integrated Brazilian Algae-sugarcane Biorefinery

    No full text
    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery.81373381Lundquist, T.J., Woertz, I.C., Quinn, N.W.T., Benemann, J.R., (2010) Arealistic technology and engineering assessment of algae biofuel productionWijffels, R.H., Barbosa, M.J., An outlook on microalgal biofuels (2010) Science, 329, pp. 796-799Petkov, G., Ivanova, A., Iliev, I., Vaseva, I., Acritical look at the microalgae biodiesel (2012) Eur J Lipid Sci Technol, 114, pp. 103-111Xu, H., Miao, X., Wu, Q., High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters (2006) JBiotechnol, 126, pp. 499-507Satyanarayana, K.G., Mariano, A.B., Vargas, J.V.C., Areview on microalgae, a versatile source for sustainable energy and materials (2011) Int J Energy Res, 35, pp. 291-311Mata, T.M., Martins, A.A., Caetano, N.S., Microalgae for biodiesel production and other applications: a review (2010) Renew Sustain Energy Rev, 14, pp. 217-232Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K., Microalgae as a sustainable energy source for biodiesel production: a review (2011) Renew Sustain Energy Rev, 15, pp. 584-593Sikes, K., Van Walwijk, M., McGill, R., (2011) Annex XXXIV biomass derived diesel fuels, , IEA Advanced Motor Fuels, IEA Energy Technology Network, Canada, Finland, Japan (LEVO), Thailand, USAFranz, A., Lehr, F., Posten, C., Schaub, G., Modeling microalgae cultivation productivities in different geographic locations - estimation method for idealized photobioreactors (2012) Biotechnol J, 7, pp. 546-557Seabra, J.E.A., Macedo, I.C., Chum, H.L., Faroni, C.E., Sarto, C.A., Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use (2011) Biofuels Bioprod Biorefin, 5, pp. 519-532(2013) Brazilian crop assessment: sugarcane, crop 2013/2014, second estimate, , National Food Supply Company, Brasília(2013) Brazilian energy balance 2013, year 2012, , Brazilian Energy Research Office, Rio de Janeirode A Filho, R.B., Danielski, L., de Carvalho, F.R., Stragevitch, L., Recovery of carbon dioxide from sugarcane fermentation broth in the ethanol industry (2013) Food Bioprod Process, 91, pp. 287-291Brennan, L., Owende, P., Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products (2010) Renew Sustain Energy Rev, 14, pp. 557-577Carlsson, A.S., Van Beilen, J.B., Möller, R., Clayton, D., (2007) Micro- and macro-algae: utility for industrial applications, , CPL Press, University of York, UKChojnacka, K., Marquez-Rocha, F.-J., Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae (2004) Biotechnology, 3, pp. 21-34Chisti, Y., Biodiesel from microalgae (2007) Biotechnol Adv, 25, pp. 294-306Williams, P.J.L.B., Laurens, L.M.L., Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics (2010) Energy Environ Sci, 3, p. 554Darzins, A., Pienkos, P., Edye, L., Current status and potential for algal biofuels production (2012) Int Energy Agency (IEA) Bioenergy Task, 39Demirbas, A., Demirbas, M.F., Importance of algae oil as a source of biodiesel (2011) Energy Convers Manage, 52, pp. 163-170Lam, M.K., Lee, K.T., Microalgae biofuels: a critical review of issues, problems and the way forward (2012) Biotechnol Adv, 30, pp. 673-690Sikes, K., Van Walwijk, M., McGill, R., (2010) Algae as a feedstock for biofuels: an assessment of the state of technology and opportunities, , vol. Annex XXXIV Subtask 2, IEA Advanced Motor FuelsDavis, R., Aden, A., Pienkos, P.T., Techno-economic analysis of autotrophic microalgae for fuel production (2011) Appl Energy, 88, pp. 3524-3531Uduman, N., Qi, Y., Danquah, M.K., Forde, G.M., Hoadley, A., Dewatering of microalgal cultures: a major bottleneck to algae-based fuels (2010) JRenew Sustain Energy, 2, p. 012701Halim, R., Danquah, M.K., Webley, P.A., Extraction of oil from microalgae for biodiesel production: a review (2012) Biotechnol Adv, 30, pp. 709-732Hoekman, S.K., Biofuels in the U.S. - challenges and opportunities (2009) Renew Energy, 34, pp. 14-22(2013) Company data - see algae technologySforza, E., (2012) Oil from microalgae: species selection, photobioreactor design and process optimization, , PhD., Universtità Degli Studi di PadovaJiang, Y., Zhang, W., Wang, J., Chen, Y., Shen, S., Liu, T., Utilization of simulated flue gas for cultivation of scenedesmus dimorphus (2013) Bioresour Technol, 128, pp. 359-364Ryu, H.J., Oh, K.K., Kim, Y.S., Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate (2009) JInd Eng Chem, 15, pp. 471-475Fazal, M.A., Haseeb, A.S.M.A., Masjuki, H.H., Biodiesel feasibility study: an evaluation of material compatibilityperformanceemission and engine durability (2011) Renew Sustain Energy Rev, 15, pp. 1314-1324Kalam, M., Masjuki, H., Biodiesel from palmoil-an analysis of its properties and potential (2002) Biomass Bioenergy, 23, pp. 471-479(2006) Environmental management - life cycle assessment: principles and framework(2006) Environmental management - life cycle assessment: requirements and guidelines(2012) Database. Swiss centre for life cycle inventoriesChagas, M.F., Cavalett, O., Silva, C.R.U., Seabra, J.E.A., Bonomi, A., Adaptação de inventários de ciclo de vida da cadeia produtiva do etanol (2012) III Congr. Bras. Em Gest. Ciclo Vida Prod. E Serviços, 1, pp. 1-6. , DentalPress Publishing, Maringá, Paraná, BrasilCavalett, O., Junqueira, T.L., Dias, M.O.S., Jesus, C.D.F., Mantelatto, P.E., Cunha, M.P., Environmental and economic assessment of sugarcane first generation biorefineries in Brazil (2012) Clean Technol Environ Policy, 14, pp. 399-410Bonomi, A., Mariano, A.P., Jesus, C.D.F., Franco, H.C.J., Cunha, M.P., Dias, M.O.S., (2012) The virtual sugarcane biorefinery (VSB): 2011 report, , Brazilian Bioethanol Science and Technology Laboratory (CTBE), Campinas, São PauloSouza, S.P., Seabra, J.E.A., Assessment of environmental and economic aspects of the integrated production of ethanol and biodiesel (2013) 21st Eur. Biomass Conf. Exhib., CopenhagenHassuani, S.J., Leal, M.R.L.V., Macedo, I.C., (2005) Biomass power generation: sugar cane bagasse and trash, , Programa das Nações Unidas para o Desenvolvimento (PNUD) and Centro de Tecnologia Canavieira (CTC), Piracicaba, SP, BrazilPrepared by the national greenhouse gas inventories programme (2006) 2006 IPCC guidelines for national greenhouse gas inventories, , IGES, Japan, H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe (Eds.)Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Second generation ethanol in Brazil: can it compete with electricity production? (2011) Bioresour Technol, 102, pp. 8964-8971Delrue, F., Setier, P.-A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G., An economic, sustainability, and energetic model of biodiesel production from microalgae (2012) Bioresour Technol, 111, pp. 191-200Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., Bernard, O., Life-cycle assessment of biodiesel production from microalgae (2009) Environ Sci Technol, 43, pp. 6475-6481Batan, L., Quinn, J., Willson, B., Bradley, T., Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae (2010) Environ Sci Technol, 44, pp. 7975-7980Fábregas, J., Maseda, A., Domínguez, A., Otero, A., The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture (2004) World J Microbiol Biotechnol, 20, pp. 31-35Rubio, F.C., Fernandez, F.G., Perez, J.A., Camacho, F.G., Grima, E.M., Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture (1999) Biotechnol Bioeng, 62, pp. 71-86Redfield, A.C., The biological control of chemical factors in the environment (1958) Am Sci, 46, pp. 205-221Oliverio, J.L., Barreira, S.T., Rangel, S.C.P., Integrated biodiesel production in barralcool sugar and alcohol mill (2007) Int Sugar J, 109, p. 12Sforza, E., Cipriani, R., Morosinotto, T., Bertucco, A., Giacometti, G.M., Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina (2012) Bioresour Technol, 104, pp. 523-529Sforza, E., Bertucco, A., Morosinotto, T., Giacometti, G.M., Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: from lab-scale experiments to large-scale design (2012) Chem Eng Res Des, 90, pp. 1151-1158(2013) Biocombustíveis, biodiesel: boletim mensal do biodiesel, Jan-Dez 2012, , Agência Nacional de Petróleo, Gás Natural e BiocombustíveisSouza, S.P., Seabra, J.E.A., Environmental benefits of the integrated production of ethanol and biodiesel (2013) Appl Energy, 102, pp. 5-12(2012) Brazilian energy balance 2012: year 2011, , https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2012.pdf, Rio de Janeiro, [accessed 03.06.13

    Water Footprint Of Biofuels In Brazil: Assessing Regional Differences

    No full text
    The expected expansion of bioenergy in Brazil has raised concerns about the implications for its current comfortable situation of water resources availability. As water availability within the Brazilian territory is uneven, the bioenergy expansion might represent different impacts on the water resources of different regions. This work assessed, at the municipal and state levels, (i) the green and blue water footprint (WF) of the main liquid biofuels produced in Brazil (sugarcane ethanol and biodiesel); (ii) the impacts of full and salvage irrigation strategies on sugarcane WF; and (iii) the water demand for different agricultural land use scenarios. For the states of São Paulo, Minas Gerais, and Goiás, the WF of sugarcane ethanol was evaluated around 71 L MJ-1, while in the state of Paraná it reaches 100 L MJ-1. For biodiesel, values were between 40 and 50 L MJ-1. The blue WF was negligible for both biofuels, as the use of irrigation is still limited in Brazil today. Additionally, the analysis showed that full and salvage irrigation strategies would lead to lower WFs in all states considered, though in the expense of larger volumes of blue WF. Regarding land use change, the results suggested that additional evapotranspiration is occurring due to sugarcane expansion. Nevertheless, given the current situation of the Brazilian water basins, there is no evidence that sugarcane expansion over these areas will lead to critical pressure on water resources. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd.82241252Walter, A., Dolzan, P., Quilodran, O., de Oliveira, J.G., da Silva, C., Piacente, F., Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects (2011) Energ Policy, 39 (10), pp. 5703-5716(2013), http://www.fao.org/nr/water/aquastat/main/index.stm, FAO, Aquastat. [Online]. Available at:Accessed on [19September 2013]Gerbens-Leenes, W., Hoekstra, A.Y., van der Meer, T.H., The water footprint of bioenergy (2009) P Natl Acad Sci USA, 106 (25), pp. 10219-10223Jury, W.A., Vaux, H., The role of science in solving the world's emerging water problems (2005) P Natl Acad Sci USA, 102 (44), pp. 15715-15720Ward, F.A., Pulido-Velazquez, M., Water conservation in irrigation can increase water use (2008) P Natl Acad Sci USA, 105 (47), pp. 18215-18220Berndes, G., Bioenergy and water - the implications of large-scale bioenergy production for water use and supply (2002) Global Environ Chang, 12 (4), pp. 253-271Gerbens-Leenes, P.W., Hoekstra, A.Y., van der Meer, T., The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply (2009) Ecol Econ, 68 (4), pp. 1052-1060Gerbens-Leenes, W., Hoekstra, A.Y., The water footprint of sweeteners and bio-ethanol (2012) Environ Int, 40, pp. 202-211Wu, M., Mintz, M., Wang, M., Arora, S., Water consumption in the production of ethanol and petroleum gasoline (2009) Environ Manage, 44 (5), pp. 981-997Gerbens-Leenes, W., Hoekstra, A.Y., The water footprint of biofuel-based transport (2011) Energ Environ Sci, 4 (8), pp. 2658-2668Mekonnen, M., Hoekstra, A., The green, blue and grey water footprint of crops and derived crop products (2011) Hydrol Earth Syst Sc, 15 (5), pp. 1577-1600(2009) Censo agropecuário 2006: Brasil, Grandes Regiões e Unidades da Federação, , IBGE, Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, BrasilPinto, R., Afférri, A., Díaz, P., (2011) Elias A and Trento E, , Resultados preliminares da pesquisa sobre a cana irrigada no Brasil. Projeto Cana Pede Água(2011) Brazilian Energy Balance 2011 Year 2010, , EPE, Empresa de Pesquisa Energética, Rio de JaneiroHernandes, T., Walter, A., Galdos, M., Cunha, M., A review of recent land use change driven by sugarcane expansion in Brazil (2012) 20th European Biomass Conference and Exhibition, , Milan, Italy, 18-22 June 2012(2012), http://www.redeagro.org.br, RedeAgro, Rede de Conhecimento do Agro Brasileiro [Online]. Available at:[16January 2012](2012), http://www.sidra.ibge.gov.br, IBGE, Sistema de Recuperação Automática. Base de Dados Agregados: Instituto Brasileiro de Geografia e Estatística. [Online]. Available at:[16January 2012](2013), www.conab.gov.br, CONAB. Séries históricas. [Online]. Available at:[21 January ]Nassar, A.M., Rudorff, B.F.T., Antoniazzi, L.B., Aguiar, D.A., Bacchi, M.R.P., Adami, M., Prospects of the sugarcane expansion in Brazil: Impacts on direct and indirect land use changes (2008) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment, pp. 63-93. , in, ed by Zuurbier P and van den Vooren J. Wageningen Academic Publishers, Wageningen, The NetherlandsAdami, M., Rudorff, B.F.T., Freitas, R.M., Aguiar, D.A., Sugawara, L.M., Mello, M.P., Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil (2012) Sustainability, 4 (4), pp. 574-585(2012) Collection of internal reports. Embrapa Cerrados, , Embrapa, Brasília, DF, Brazil(1993) CLIMWAT for CROPWAT: A climatic database for irrigation planning and management. Irrigation and Drainage, , FAO, paper No. 49. Food and Agriculture Organization, Rome, Italy(2012), http://www.agricultura.gov.br, MAPA, Zoneamento Agrícola - Portarias segmentadas por UF [Online]. Ministério da Agricultura, Pecuária e Abastecimento Available at:[06February 2012](1992), FAO, CROPWAT: A computer program for irrigation planning and management. Irrigation and Drainage, paper No. 46. Food and Agriculture Organization, Rome, ItalyMourad, A.L., (2008) Avaliação da produção de Biodiesel a partir da Soja em sua Cadeia Produtiva, , Unicamp, Campinas, BrazilSeabra, J., Macedo, I., Chum, H., Faroni, C., Sarto, C., Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use (2011) Biofuel Bioprod Bioref, 5 (5), pp. 519-532Yeh, S., Berndes, G., Mishra, G., Wani, S., Neto, A., Suh, S., Evaluation of water use for bioenergy at different scales (2011) Biofuel Bioprod Bioref, 5 (4), pp. 361-374(2009) Manual de conservação e reúso de água na agroindústria sucroenergética, , ANA, FIESP, UNICA and CTC, ANA, Brasília 288Hoekstra, A.Y., (2011) The Water Footprint Assessment Manual: Setting the global standard, , Earthscan, London(2013), FAO, CROPWAT 8.0. FAO, RomeDastane, N.G., (1978) Effective rainfall in irrigated agriculture, , Food and Agriculture Organization, Rome, Italy(2012), www.ibge.gov.br, IBGE, IBGE Cidades, Instituto Brasileiro de Geografia e Estatística. Available at:[May ]Embrapa, P., Tecnologias. Embrapa Gado de Corte (2010)(2013), ANP, Anuário Estatístico Brasileiro do Petróleo e do Gás Natural 2013. ANP, Rio de Janeiro(2013), REN21. Renewables 2013 Global Status Report. REN, ParisAllen, R.G., Pereira, L.S., Raes, D., Smith, M., (1998) Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage, , paper 56. FAO, Rome, ItalyResende Neto, A., (2011) Sustentabilidade, água virtual e pegada hídrica: Um estudo exploratório no setor bioenergético, , Universidade Federal do Rio Grande do Sul, Porto Alegre(2012) Conjuntura dos recursos hídricos no Brasil: Informe 2012, , ANA, Agência Nacional de Águas, Brasília, DF 215(2012), www.unica.com.br, UNICA, União da Indústria da Cana-de-Açúcar 2012 [Online]. Available at:[06 February ](2011) Acompanhamento de safra brasileira: Cana-de-açúcar, segundo levantamento, agosto/2011, , CONAB, Companhia Nacional de Abastecimento, Brasília(2013), http://www.dsr.inpe.br/laf/canasat/en, Canasat, Sugarcane crop monitoring in Brazil [Online]. Available at:[21January 2013]Doorenbos, J., Pruitt, W.O., Guidelines for predicting crop water requirements. Irrigation and Drainage, paper 24. FAO, Rome, Italy (1977)Silva, T.G.F., Moura, M.S.B., Zolnier, S., Soares, J.M., Vieira, V.J.S., Gomes Júnior, W.F., Requerimento hídrico e coeficiente de cultura da cana-de-açúcar irrigada no semiárido brasileiro (2012) Revista Brasileira de Engenharia Agrícola e Ambiental, 16 (1), pp. 64-71Inman-Bamber, N.G., McGlinchey, M.G., Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crop Res 83(2):125-13

    Sugarcane Straw Availability, Quality, Recovery And Energy Use: A Literature Review

    No full text
    Sugarcane straw represents, under Brazilian conditions, approximately one third of the total primary energy of sugarcane in the field. Today, its use for energy is incipient and it is mostly wasted by either burning in the pre-harvest or left on the ground to decay. Besides its potential use as feedstock for energy production, there are several possible agronomic benefits of the straw blanket left on the ground such as soil protection against erosion, increase of soil organic carbon content, inhibition of weed growth, nutrient recycling and reduction of soil water losses, to name a few. The balance of the impacts and the economic and energetic value of the straw indicate that the amount of the straw left on the ground that could be considered optimal is dependent on the local conditions, agricultural practices, characteristics of the straw and intended final use. This work is meant to shed some light into this subject to help the understanding of the importance of the various impacts of the straw blanket on the ground, the availability and quality of the straw, the economics of straw recovery and use and the main criteria for determining the amount of straw that can be recovered for bioenergy or biofuels production. © 2013 Elsevier Ltd.531119Leal, M.R.L.V., The potential of sugarcane as an energy source Proceedings of the XXVI International Society of Sugar Cane Technologists (ISSCT) Congress, pp. 23-34. , July 31st to August 3rd, 2007, Durban, South AfricaBall-Coelho, B., Tiessen, H., Stewart, J.W.B., Salcedo, I.H., Sampaio, E.V.S.B., Residue management effects on sugarcane yield and soil properties in northeastern Brazil (1993) Agron J, 85, pp. 1004-1008Meier, E.A., Thorburn, P.J., Wegener, M.K., Basford, K.E., The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland (2006) Nutr Cycl Agroecosys, 75, pp. 101-114Sparovek, G., Schnug, E., Temporal erosion-induced soil degradation and yield loss (2001) Soil Sci Soc Am J, 65, pp. 1479-1486Dourado-Neto, D., Timm, L.C., Oliveira, J.C.M., Reichardt, K., Bacchi, O.O.S., Tominaga, T.T., State-space approach for the analysis of soil water content and temperature in a sugarcane crop (1999) Scientia Agricola, 56 (4), pp. 1215-1221Tominaga, T.T., Cássaro, F.A.M., Bacchi, O.O.S., Reichardt, K., Oliveira, J.C.M., Timm, L.C., Variability of soil water content and bulk density in a sugarcane field (2002) Aust J Soil Res, 40, pp. 604-614Graham, M.H., Haynes, R.J., Meyer, J.H., Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa (2002) Eur J Soil Sci, 53, pp. 589-598Cerri, C.C., Galdos, M.V., Maia, S.M.F., Bernoux, M., Feigl, B.J., Powlson, D., Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data (2011) Eur J Soil Sci, 62, pp. 23-28Hassuani, S.J., Leal, M.R.L.V., Macedo, I.C., Biomass power generation: sugarcane bagasse and trash (2005) Série Caminhos para Sustentabilidade, , PNUD-CTC, PiracicabaAtchison, J.E., Hettenhaus, J.R., (2004) Innovative methods for corn stover collecting, handling, storing and transporting, pp. p. 52. , National Renewable Energy Laboratory, Golden, Colorado, Report No. NREL/SR-510-33893Michelazzo, M.B., (2005) Análise de sensibilidade de seis sistemas de recolhimento do palhiço da cana-de-açúcar (Saccharum spp.), , Master's Thesis, Universidade Estadual de Campinas, CampinasBraunbeck, O.A., Neto, E.A., Logística do transporte de material-prima e resíduos da cana-de-açúcar (2010) Bioetanol de cana-de-açúcar: P&D para produtividade e sustentabilidade, , Blucher, São Paulo, L.A.B. Cortez (Ed.)(2007) CGEE - Centro de Gestão e Estudos Estratégicos. Estudo prospectivo de solo, clima e impacto ambiental para o cultiva da cana-de-açúcar e análise técnica/econÔmica para o uso do etanol como combustível a, , NIPE/Unicamp e Centro de Gestão e Estudos Estratégicos, CampinasSokhansanj, S., Mani, S., Turhollow, A., Kumar, A., Bransby, D., Lynd, L., Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.) - current technology and envisioning a mature technology (2009) Biofuel Bioprod Bior, 3, pp. 124-141Hess, J.R., Kenney, K.L., Ovard, L.P., Searcy, E.M., Wright, C.T., Commodity-scale production of an infrastructure-compatible bulk solid from herbaceous lignocellulosic biomass (2009) Uniform-format bioenergy feedstock supply system design report series, p. 176. , Idaho National Laboratory, Idaho Falls, Idaho, Report No. INL/EXT-09-17527Seabra, J.E.A., Macedo, I.C., Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil (2011) Energ Policy, 39, pp. 421-428Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Second generation ethanol in Brazil: can it compete with electricity production? (2011) Bioresour Technol, 102, pp. 8964-8971Larson, E.D., Williams, R.H., Leal, M.R.L.V., A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba (2001) Energy Sustain Dev, 1, pp. 54-76Seabra, J.E.A., Tao, L., Chum, H.L., Macedo, I.C., A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering (2010) Biomass Bioenerg, 34, pp. 1065-1078Andraski, B.J., Mueller, D.H., Daniel, T.C., Effects of tillage and rainfall simulation date on water and soil losses (1985) Soil Sci Soc Am J, 49, pp. 1512-1517Timm, L.C., Oliveira, J.C.M., Tominaga, T.T., Cássaro, F.A.M., Reichardt, K., Bacchi, O.O.S., Water balance of a sugarcane crop: quantitative and qualitative aspects of its measurement (2002) Revista Brasileira de Engenharia Agrícola e Ambiental, 6, pp. 57-62Hillel, D., (1998) Environmental soil physics, , Academic Press, San DiegoGraham, R.L., Nelson, R., Sheehan, J., Perlack, R.D., Wright, L.L., Current and potential U.S. corn stover supplies (2007) Agron J, 99, pp. 1-11Wilhelm, W.W., Johnson, J.M.F., Hatfield, J.L., Voorhees, W.B., Linden, D.R., Crop and soil productivity response to corn residue removal: a literature review (2004) Agron J, 96, pp. 1-17Wilhelm, W.W., Johnson, J.M.F., Karlen, D.L., Lightle, D.T., Corn stover to sustain soil organic carbon further constrains biomass supply (2007) Agron J, 99, pp. 1665-1667(2010) Renewable fuel standard program (RFS2) regulatory impact analysis, p. 1119. , United States Environmental Protection Agency, Washington, DC, Report No. EPA-420-R-10-006, US EPASheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Energy and environmental aspects of using corn stover for fuel ethanol (2004) J Ind Ecol, 7 (3-4), pp. 117-146De Maria, I.C., Dechen, S.C.F., Perdas por erosão em cana-de-açúcar (1998) Sociedade dos Técnicos Açucareiros Alcooleiros do Brasil, 17, pp. 20-21Macedo, I.C., (2005) Sugar cane's energy - twelve studies on Brazilian sugar cane agribusiness and its sustainability, , Berlendis & Vertecchia, UNICA, São PauloIzidorio, R., Martins Filho, M.V., Marques Júnior, J., Souza, Z.M., Pereira, G.T., Perdas de nutrientes por erosão e sua distribuição espacial em área sob cana-de-açúcar (2005) Engenharia Agrícola, 25 (3), pp. 660-670Andrade, N.S.F., Martins Filho, M.V., Torres, J.L.R., Pereira, G.T., Marques Júnior, J., Impacto técnico e econÔmico das perdas de solo e nutrientes por erosão no cultivo da cana-de-açúcar (2011) Engenharia Agrícola, 31, pp. 539-550Chapman, L.S., Larsen, P.L., Jackson, J., Trash conservation increases cane yield in the Mackay district (2001) Proc S Afr Sug Technol, 23, pp. 176-184Scarpare, F.V., (2011) Simulação do crescimento da cana-de-açúcar pelo modelo agrohidrológico SWAP/WOFOST, , PhD Dissertation, Universidade de São Paulo, PiracicabaThorburn, P.J., Van Antwerpen, R., Meyer, J.H., Bezuidenhout, C.N., The impact of trash management on soil carbon and nitrogen: I modelling long-term experimental results in the South African sugar industry (2002) Proc S Afr Sug Technol, 76, pp. 260-268Shrivastava, A.K., Shrivastava, A.K., Solomon, S., Sustaining sugarcane productivity under depleting water resources (2011) Curr Sci, 101 (6), pp. 748-754Peres, J.G., Souza, C.F., Lavorenti, N.A., Avaliação dos efeitos da cobertura de palha de cana-de-açúcar na umidade e na perda de água do solo (2010) Eng Agríc, 30 (5), pp. 875-886Garcia, S.M., (2005) Mulching vertical e manejo da água em sistema de plantio direto, , PhD Dissertation, Universidade Federal de Santa Maria, Santa MariaHowell, T.A., Phene, C.J., Distribution of irrigation water from a low pressure lateral-moving irrigation system (1983) Trans ASAE, 26, pp. 1422-1429Meyer, J.H., van Antwerpen, R., Henry, P.C., Leibbrandt, N., Improved cane yield from vertical mulching under rainfed and irrigated cane conditions (1992) Proc South Afr Sugar Technologists Assoc, pp. 89-94Wood, A.W., Management of crop residues following green harvesting of sugarcane in north Queensland (1991) Soil Tillage Res, 20, pp. 69-85Canellas, L.P., Velloso, A.C.X., Marciano, C.R., Ramalho, J.F.G.P., Rumjanek, V.M., Rezende, C.E., Propriedades químicas de um cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo (2003) R Bras Ci Solo, 27, pp. 935-944Razafimbelo, T., Barthes, B., Larre-Larrouy, M.C., De Luca, E.F., Laurent, J.Y., Cerri, C.C., Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil (2006) Agr Ecosyst Environ, 115, pp. 285-289Vallis, I., Parton, W.J., Keating, B.A., Wood, A.W., Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane (1996) Soil Till Res, 38, pp. 115-132Feller, C., Efeitos da colheita sem queima da cana-de-açúcar sobre a dinâmica do carbono e propriedades do solo , p. 150. , Final report Fapesp 2001(98/12648-3). Piracicaba, BrazilLuca, E.F., (2002) Matéria orgânica e atributos do solo em sistemas de colheita com e sem queima da cana-de-açúcar, , PhD Dissertation, Universidade de São Paulo, PiracicabaGaldos, M.V., Cerri, C.C., Cerri, C.E.P., Soil carbon stocks under burned and unburned sugarcane in Brazil (2009) Geoderma, 153, pp. 347-352Blair, G.J., Chapman, L., Whitbread, A.M., Ball-Coelho, B., Larsen, P., Tiessen, H., Soil carbon changes resulting from sugarcane trash management at two locations in Queensland, Australia, and in North-East Brasil (1998) Aust J Soil Res, 36, pp. 873-881Robertson, F., Sugarcane trash management: consequences for soil carbon and nitrogen - final report of the project nutrient cycling in relation to trash management (2003) CRC for sustainable sugar production 2003, , CRC Sugar Technical Publication, BSES & CRC Sugar, IndooroopillyGraham, M.H., Haynes, R.J., Zelles, L.E., Meyer, J.H., Long-term effects of green cane harvesting versus burning on the size and diversity of the soil microbial community (2001) Proc South Afr Sugar Technologists' Assoc, 75, pp. 228-234Six, J., Conant, R.T., Paul, E.A., Paustian, K., Stabilization mechanisms of soil organic matter: implications for C-saturation of soils (2002) Plant and Soil, 241, pp. 155-176Silver, W.L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., Cosme, R., Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian Forest ecosystem (2000) Ecosystems, 3, pp. 193-209Hao, X., Kravchenko, A.N., Management practice effects on surface soil total carbon: differences along a textural gradient (2007) Agron J, 99, pp. 18-26Resende, A.S., Xavier, R.P., Oliveira, C., Urquiaga, S., Alves, B., Boddey, R.M., Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil (2006) Plant Soil, 281, pp. 339-351Cerri, C.C., Bernoux, M., Feller, C., Campos, D.C., De Luca, E.F., Eschenbrenner, V., (2004) Canne à sucre et sequestration du carbone, p. 15. , Academie d'Agriculture de FranceLavelle, P., Decaens, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Soil invertebrates and ecosystem services (2006) Eur J Soil Biol, 42, pp. S3-S15Wisniewski, C., Holtz, G.P., Decomposição da palhada e liberação de nitrogênio e fósforo numa rotação aveia-soja sob plantio direto (1997) Pesq Agropec Bras, 32 (11), pp. 1191-1197Macedo, N., Botelho, P.S.M., Ribeiro, L.D., Stupiello, J.J., Petri, J., Oliveira, P.F.M., (2002) Número e época de aplicações de inseticidas no controle de cigarrinha da raiz Mahanarva fimbriolata em cana-de-açúcar, , 19° Congresso Brasileiro de Entomologia, Sociedade Entomológica do Brasil, ManausSilva, J.R.V., Costa, N.V., Martins, D., Efeito da palhada de cultivares de cana-de-açúcar na emergência de Cyperus rotundus (2003) Planta Daninha, 21 (3), pp. 375-380Martins, D., Velini, E.D., Martins, C.C., Souza, L.S., Emergência em campo de dicotiledÔneas infestantes em solo coberto com palha de cana-de-açúcar (1999) Planta Daninha, 17 (1), pp. 151-16

    Environmental trade-offs of renewable jet fuels in Brazil: Beyond the carbon footprint

    No full text
    The use of renewable jet fuels (RJFs) is an option for meeting the greenhouse gases (GHG) reduction targets of the aviation sector. Therefore, most of the studies have focused on climate change indicators, but other environmental impacts have been disregarded. In this paper, an attributional life cycle assessment is performed for ten RJF pathways in Brazil, considering the environmental trade-offs between climate change and seven other categories, i.e., fossil depletion, terrestrial acidification, eutrophication, human and environmental toxicity, and air quality-related categories, such as particulate matter and photochemical oxidant formation. The scope includes sugarcane and soybean for first-generation (1G) pathways and residual materials (wood and sugarcane residues, beef tallow, and used cooking oil-UCO) for second-generation (2G) pathways. Three certified technologies to produce RJF are considered: hydroprocessed esters and fatty acids (HEFA), alcohol-to-jet (ATJ), and Fischer-Tropsch (FT). Assuming the residual feedstocks as wastes or by-products, the 2G pathways are evaluated by two different approaches, in which the biomass sourcing processes are either accounted for or not. Results show that 1G pathways lead to significant GHG reductions compared to fossil kerosene from 55% (soybean/HEFA) to 65% (sugarcane/ATJ). However, the sugarcane-based pathway generated three-fold higher values than fossil kerosene for terrestrial acidification and air quality impacts, and seven-fold for eutrophication. In turn, soybean/HEFA caused five-fold higher levels of human toxicity. For 2G pathways, when the residual feedstock is assumed to be waste, the potential GHG emission reduction is over 74% with no relevant trade-offs. On the other hand, if the residual feedstocks are assumed as valuable by-products, tallow/HEFA becomes the worst option and pathways from sugarcane residues, even providing a GHG reduction of 67% to 94%, are related to higher impacts than soybean/HEFA for terrestrial acidification and air quality. FT pathways represent the lowest impacts for all categories within both approaches, followed by UCO/HEFA714CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQsem informaçã

    Long-term Prospects For The Environmental Profile Of Advanced Sugar Cane Ethanol

    No full text
    This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.48201239412402(2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, , United States Environmental Protection Agency (EPA). EPA-420-R-10-006. FebruaryEU RED -European Renewable Energy Directive. Directive2009/28/EC of the European Parliament and of the Council of 23 April2009 on the promotion of the use of energy from renewable sourcesand amending and subsequently repealing Directives 2001/77/EC and2003/30/EC. Official Journal of the European Union. 5.6.2009Souza, R.R., Schaeffer, R., Meira, I., Can new legislation in importing countries represent new barriers to the development of an international ethanol market? (2011) Energy Policy, 39 (6), pp. 3154-3162Khatiwada, D., Seabra, J., Silveira, S., Walter, A., Accounting greenhouse gas emissions in the life cycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations (2012) Energy Policy., 47, pp. 384-397Dale, B.E., Anderson, J.E., Brown, R.C., Csonka, S., Dale, V.H., Herwick, G., Jackson, R.D., Wang, M.Q., Take a closer look: Biofuels can support environmental, economic and social goals (2014) Environ. Sci. Technol., 48, pp. 7200-7203Foster-Carneiro, T., Berni, M.D., Dorileo, I.L., Rostagno, M.A., Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil (2013) Resour., Conserv. Recycl., 77, pp. 78-88Nyko, D., Garcia, J.L.F., Milanez, A.Y., Dunham, F.B., A corrida tecnológica pelos biocombustíveis de segunda geração: uma perspectiva comparada (2011) Biocombustíveis, 32. , http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/conhecimento/bnset/set32101.pdf, BNDES Setorial, (accessed Sept 20, 2014)www.ctbe.org.br, accessed Sept 20, 2014Luo, L., Van Der Voet, E., Huppes, G., Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil (2009) Renewable Sustainable Energy Rev., 13, pp. 1613-1619Seabra, J.E.A., Macedo, I.C., Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil (2011) Energy Policy, 39, pp. 421-428Seabra, J.E.A., Tao, L., Chum, H.L., Macedo, I.C., A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering (2010) Biomass Bioenergy, 34 (8), pp. 1065-1078Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell, C.E.V., Filho, R.M., Bonomi, A., Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash (2012) Bioresour. Technol., 103 (1), pp. 152-161Albarelli, J.Q., Ensinas, A.V., Silva, M.A., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2014) Chem. Eng. Res. Des., 92, pp. 1470-1481Raele, R., Boaventura, J.M.G., Fischmann, A.A., Sarturi, G., Scenarios for the second generation ethanol in Brazil (2014) Technol. Forecasting Social Change, 87, pp. 205-223Bordonal, R.O., Figueiredo, E.B., Scala, N.J.R., Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest, considering other conservationist management practices (2012) Global Change Biol. Bioenergy, 4, pp. 846-858Guinée, J., (2002) Handbook on Life Cycle Assessment - An Operational Guide to the ISO Standards, 7. , Kluwer Academic PublishersCML-IA Spreadsheet, , http://www.cml.leiden.edu/software/data-cmlia.html, version 3.9. (accessed Sept 20, 2014)(2012) CMLCA Software, , http://www.cmlca.eu/cmlca52beta.zip, accessed Sept 20, 2014Chagas, M.F., Cavalett, O., Silva, C.R.U., Seabra, J.E.A., Bonomi, A., Adaptação de Inventário de Ciclo de Vida da cadeia produtiva do etanol de cana-de-açúcar no Brasil (2012) III Congresso Brasileiro em Gestão Do Ciclo de Vida de Produtos e ServiçosSwiss Centre for Life Cycle Inventories, Ecoinvent Database, , http:www.ecoinvent.ch/, Version 2.0. (accessed Sept 20, 2014)Balanço Energético Nacional, (2012), https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2012.pdf, 2012 - Ano base 2011. Brazil: Empresa de Pesquisa Energética. Rio de Janeiro: EPE, (accessed Sept 20, 2014)Macedo, I.C., Seabra, J.E.A., Mitigação of GHG emissions using sugarcane bioethanol (2008) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment, pp. 95-111. , Zuurbier, P. Van de Vooren, J. Wageningen Academic Publishers: The NetherlandsNassar, A.M., Rudorff, B.F.T., Antoniazzi, L.B., Aguiar, D.A., Bacchi, M.R.P., Adami, M., Prospects of the sugarcane expansion in Brazil: Impacts on direct and indirect land use changes (2008) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment, pp. 66-93. , Zuurbier, P. Van de Vooren, J. Wageningen Academic Publishers: The NetherlandsWalter, A., Dolzan, P., Quilodran, O., De Oliveira, J.G., Da Silva, C., Piacente, F., Sergerstedt, A., Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects (2010) Energy Policy, 39 (10), pp. 5703-5716Adami, M., Rudorff, B.F.T., Freitas, R.M., Aguiar, D.A., Sugawara, L.M., Mello, M.P., Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil (2012) Sustainability, 4, pp. 574-585HTTP://www.sigam.ambiente.sp.gov.br/sigam2/Repositorio/24/Documentos/Lei%20Estadual_11241_2002.pdf, Dispõe sobre a eliminação gradativa da queima da palha da cana-de-açúcar e dá providências correlatas. Lei Estadual no. 11.241/2002. (accessed Sept 20, 2014)Cavalett, O., Chagas, M.F., Seabra, J.E.A., Bonomi, A., Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods (2013) Int. J. Life Cycle Assess., 18, pp. 647-658Hamza, M.A., Anderson, W.K., Soil compaction in cropping systems: A review of the nature. Causes and possible solutions (2005) Soil Tillage Res., 82 (2), pp. 121-145(2009) Bioetanol Combustível: Uma Oportunidade para o Brasil, , http://www.cgee.org.br/publicacoes/bioetanol2_2009.php, Centro de Gestão e Estudos Estratégicos. Brasília, DF, (accessed Sept 20, 2014)São Paulo State. CETESB (Companhia de Tecnologia de Saneamento Ambiental). (P4.231. Dez/ 2006)Leal, M.R.L.V., Walter, A.S., Seabra, J.E.A., Sugarcane as an energy source (2013) Biomass Convers. Biorefin., 3 (1), pp. 17-26Filho, A.B., A Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no Brasil - Análise do Desempenho da Safra 2009-2010 (2011) CONAB (Companhia Nacional de Abastecimento), , http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_05_05_15_45_40_geracao_termo_baixa_res.pdf, accessed Sept 20, 2014Dias, M.O.S., Modesto, M., Ensinas, A.V., Nebra, A.S., Maciel Filho, R., Rossell, C.E.V., Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems (2011) Energy, 36 (6), pp. 3691-3703Walter, A., Galdos, M.V., Scarpare, F.V., Leal, M.R.L.V., Seabra, J.E.A., Cunha, M.P., Picoli, M.C., Oliveira, C.O.F., Brazilian sugarcane ethanol: Developments so far and challanges for the future (2014) WIREs Energy Environ., 3, pp. 70-92De Almeida, J.L., Sampaio, P.H., (2010) Evaporator of Vinasse Concentration for Distilleries in General, , US Patent, 4 MarHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Dudgeon, D., (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol - Dilute-acid Pretreatment and Enzimatic Hydrolysis of Corn Stover, , http://www.nrel.gov/biomass/pdfs/47764.pdf, Technical ReportNational Renewable Energy Laboratory, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy: (accessed Sept 20, 2014)Hsu, D.D., Inman, D., Heath, G.A., Wolfrum, E.J., Mann, M.K., Aden, A., Life cycle environmental impacts of selected U.S. Ethanol production and use pathways in 2022 (2010) Environ. Sci. Technol., 44 (13), pp. 5289-5297(2007) The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, , https://greet.es.anl.gov/, GREET. Versão 1.8c. Argonne National Latoratory, U.S. Department of Energy: (accessed Sept 20, 2014)Primo, K.R., Salomon, K.R., Teixeira, F.N., Lora, E.S., Estudo de dispersão atmosférica dos óxidos de nitrogênio (NOx) emitidos durante a queima de bagaço em uma usina de açúcar (2005) Biomassa Energia, 2, pp. 79-90Boddey, R.M., Soares, L.H.B., Alves, B.J.R., Urquiaga, S., Bio-ethanol Production in Brazil (2008) Biofuels, Solar and Wind As Renewable Energy Systems, pp. 321-356. , Pimentel, D. Springer Science+Business Media B.V. Chapter 3Seabra, J.E.A., (2008) Avaliação Técnico-econômica de Opções Para O Aproveitamento Integral da Biomassa de Cana No Brasil, , Ph.D. Thesis, Universidade Estadual de Campinas, CampinasHassuani, S.J., Leal, M.R.L.V., Macedo, I.C., (2005) Biomass Power Generation: Sugarcane Bagasse and Trash, , http://www.sucre-ethique.org/IMG/pdf/CTC_energy_-_biomass_1_.pdf, PNUD Brasil and Centro de Tecnologia Canavieira: Piracicaba, (accessed Sept 20, 2014
    corecore