6 research outputs found

    Synthesis and characterization of Sophora alopecuroides L. green synthesized of Ag nanoparticles for the antioxidant, antimicrobial and DNA damage prevention activity

    No full text
    In this study, it was aimed to investigate the amount of antioxidant, protective properties against DNA damage and antibacterial properties against various pathogens after the interaction of Ag metal (Ag NPs/Sa) of Sophora alopecuroides L. (S. alopecuroides L) plant seed, which is grown in Iğdır and used in the treatment of many diseases. The DPPH radical quenching activity of Ag NPs/Sa was performed by using Blois method, DNA damage prevention activity by gel electrophoresis and antibacterial property by disk diffusion method. With the green synthesis method, AgNPs obtained as a result of the reaction of the plant and Ag metal are UV visible spectrophotometer (UV-vis), fourier-transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). DPPH radical quenching activity of Ag NPs/Sa was investigated in the concentration range of 25-250 μg/ml. The radical quenching activity at a concentration of 250 μg/ml was 85,215 ± 0,101%, while this value was 93,018% for the positive control BHA. It has been observed that the protective property of pBR322 plasmid DNA damage against OH radicals originating from H2O2 increases with concentration. It has been observed that Ag NPs/Sa has significant antimicrobial properties against some pathogens (B. subtilis ATCC 6633 E. coli ATCC 25952, B. cereus ATCC 10876, P. aeruginosa ATCC 27853, E. faecalis ATCC 29212, S. aureus ATTC 29213 and C. albicans ATTC 90028) that cause disease and even some pathogens are more effective than antibiotics

    An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt-Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications

    No full text
    Background: Green synthesis is an effective and friendly method for the environment, especially in recent years has been used in many areas. It finds application opportunities in many fields such as physics, chemistry, electronics, food, and especially health and is the subject of intensive studies in this field

    Biogenic platinum-based bimetallic nanoparticles: Synthesis, characterization, antimicrobial activity and hydrogen evolution

    No full text
    © 2022 Hydrogen Energy Publications LLCIn this study, platinum-based silver nanoparticles (Pt@Ag NPs) were synthesized by the green synthesis method, and their catalytic effects on hydrogen production were investigated. The characterization measurements of the synthesized NPs were performed by TEM, UV–Vis, XRD, and FTIR. According to TEM characterization results, Pt@Ag NPs had an average size of 5.431 nm. In experiments based on catalytic reactions for hydrogen production, test measurements were made at different parameters. It was observed that as the concentrations of the substrate and catalysts increased, the catalytic reaction accelerated, and the hydrogen release increased. Likewise, it was determined that hydrogen production increased with increasing temperature in different temperature experiments. The turnover frequency, entropy, activation energy, and enthalpy values are calculated as 702.38 h−1, -160.5 J/mol.K, 32.48 kJ/mol, and 29.94 kJ/mol, respectively. According to the reusability test results, it was observed that the average reusability was found to be 85% after 5 cycles and it was confirmed that the NPs showed high-catalytic activity. In addition, the biological activities of Pt@Ag NPs, including antimicrobial, antioxidant and anticancer were tested. Pt@Ag NPs synthesized using Hibiscus sabdariffa (Hs) extract are thought to have the potential to be used in both biomedical and catalytic applications. The use of Pt@Ag NPs in the hydrogen production process shows great promise for green energy studies because it is environmentally friendly, non-toxic, and low cost

    Efficient green photocatalyst of silver-based palladium nanoparticles for methyle orange photodegradation, investigation of lipid peroxidation inhibition, antimicrobial, and antioxidant activity

    No full text
    Nanotechnology is an interdisciplinary study that has been developing worldwide in recent years and has a serious impact on human life. The fact that the nanoparticles of plant origin are clean, non-toxic, and biocom-patible has enabled new fields of study. The Hibiscus sabdariffa (H. sabdariffa) plant has been attracted by sci-entists because of its impact on health and many other areas. The lipid peroxidation inhibiting activity, antioxidant properties, and antimicrobial properties of H. sabdariffa plant with Ag-Pd metal was ditermined. For the total phenolic component, gallic acid was used as the standard and quarcetin was used for the total flavonoid. The lipid peroxidation inhibition activity of Ag-Pd NPs in ethanol extract was found to be very well compared to the positive control (BHA). The lowest and highest concentrations of DPPH radical scavenging activity were 82.178-97.357%, whereas for BHA these values were found to be 84.142-94.142%. The highest concentration of Ag-Pd NPs at 200 mu g/mL the DPPH radical quenching activity was higher than BHA. Ag-Pd NPs showed a good antimicrobial activity against certain pathogenic microorganisms such as Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, which are the causative agents of various diseases in humans. The photodegradation activity of Ag-Pd NPs also investigated against Methyl orange dye (MO) under sunlight irradiation for 120 min and was found to be as 67.88
    corecore