3,528 research outputs found

    Raman Adiabatic Transfer of Optical States

    Full text link
    We analyze electromagnetically induced transparency and light storage in an ensemble of atoms with multiple excited levels (multi-Lambda configuration) which are coupled to one of the ground states by quantized signal fields and to the other one via classical control fields. We present a basis transformation of atomic and optical states which reduces the analysis of the system to that of EIT in a regular 3-level configuration. We demonstrate the existence of dark state polaritons and propose a protocol to transfer quantum information from one optical mode to another by an adiabatic control of the control fields

    Optimal quantum control of Bose Einstein condensates in magnetic microtraps

    Get PDF
    Transport of Bose-Einstein condensates in magnetic microtraps, controllable by external parameters such as wire currents or radio-frequency fields, is studied within the framework of optimal control theory (OCT). We derive from the Gross-Pitaevskii equation the optimality system for the OCT fields that allow to efficiently channel the condensate between given initial and desired states. For a variety of magnetic confinement potentials we study transport and wavefunction splitting of the condensate, and demonstrate that OCT allows to drastically outperfrom more simple schemes for the time variation of the microtrap control parameters.Comment: 11 pages, 7 figure

    Photons as quasi-charged particles

    Full text link
    The Schrodinger motion of a charged quantum particle in an electromagnetic potential can be simulated by the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This phenomenon can be implemented with slow light propagating through an a gas of double-Lambda atoms in an electromagnetically-induced transparency setting with spatially varied control fields. It can lead to a reduced dispersion of signal photons and a topological phase shift of Aharonov-Bohm type

    Storage and retrieval of light pulses in atomic media with "slow" and "fast" light

    Full text link
    We present experimental evidence that light storage, i.e. the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small group velocity media but can also occur in a negative group velocity medium. A simple physical picture applicable to both cases and previous light storage experiments is discussed.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Phase Coherence in a Driven Double-Well System

    Full text link
    We analyze the dynamics of the molecular field incoherently pumped by the photoassociation of fermionic atoms and coupled by quantum tunnelling in a double-well potential. The relative phase distribution of the molecular modes in each well and their phase coherence are shown to build up owing to quantum mechanical fluctuations starting from the vacuum state. We identify three qualitatively different steady-state phase distributions, depending on the ratio of the molecule-molecule interaction strength to interwell tunnelling, and examine the crossover from a phase-coherent regime to a phase-incoherent regime as this ratio increases.Comment: 5 pages, 2 figure

    Condensation of N interacting bosons: Hybrid approach to condensate fluctuations

    Get PDF
    We present a new method of calculating the distribution function and fluctuations for a Bose-Einstein condensate (BEC) of N interacting atoms. The present formulation combines our previous master equation and canonical ensemble quasiparticle techniques. It is applicable both for ideal and interacting Bogoliubov BEC and yields remarkable accuracy at all temperatures. For the interacting gas of 200 bosons in a box we plot the temperature dependence of the first four central moments of the condensate particle number and compare the results with the ideal gas. For the interacting mesoscopic BEC, as with the ideal gas, we find a smooth transition for the condensate particle number as we pass through the critical temperature.Comment: 6 pages, 4 figures, to appear in Phys. Rev. Let

    Collective strong coupling between ion Coulomb crystals and an optical cavity field: Theory and experiment

    Full text link
    A detailed description and theoretical analysis of experiments achieving coherent coupling between an ion Coulomb crystal and an optical cavity field are presented. The various methods used to measure the coherent coupling rate between large ion Coulomb crystals in a linear quadrupole radiofrequency ion trap and a single field mode of a moderately high-finesse cavity are described in detail. Theoretical models based on a semiclassical approach are applied in assessment of the experimental results of [P. F. Herskind et al., Nature Phys. 5, 494 (2009)] and of complementary new measurements. Generally, a very good agreement between theory and experiments is obtained.Comment: 15 pages, 15 figure

    Interplay and optimization of decoherence mechanisms in the optical control of spin quantum bits implemented on a semiconductor quantum dot

    Full text link
    We study the influence of the environment on an optically induced rotation of a single electron spin in a charged semiconductor quantum dot. We analyze the decoherence mechanisms resulting from the dynamical lattice response to the charge evolution induced in a trion-based optical spin control scheme. Moreover, we study the effect of the finite trion lifetime and of the imperfections of the unitary evolution such as off-resonant excitations and the nonadiabaticity of the driving. We calculate the total error of the operation on a spin-based qubit in an InAs/GaAs quantum dot system and discuss possible optimization against the different contributions. We indicate the parameters which allow for coherent control of the spin with a single qubit gate error as low as 10410^{-4}.Comment: Final version, 14 pages, 11 figure

    Two-photon interference with thermal light

    Full text link
    The study of entangled states has greatly improved the basic understanding about two-photon interferometry. Two-photon interference is not the interference of two photons but the result of superposition among indistinguishable two-photon amplitudes. The concept of two-photon amplitude, however, has generally been restricted to the case of entangled photons. In this letter we report an experimental study that may extend this concept to the general case of independent photons. The experiment also shows interesting practical applications regarding the possibility of obtaining high resolution interference patterns with thermal sources.Comment: Added reference 1

    Coherent control of photon transmission : slowing light in coupled resonator waveguide doped with Λ\Lambda Atoms

    Full text link
    In this paper, we propose and study a hybrid mechanism for coherent transmission of photons in the coupled resonator optical waveguide (CROW) by incorporating the electromagnetically induced transparency (EIT) effect into the controllable band gap structure of the CROW. Here, the configuration setup of system consists of a CROW with homogeneous couplings and the artificial atoms with Λ\Lambda-type three levels doped in each cavity. The roles of three levels are completely considered based on a mean field approach where the collection of three-level atoms collectively behave as two-mode spin waves. We show that the dynamics of low excitations of atomic ensemble can be effectively described by an coupling boson model. The exactly solutions show that the light pulses can be stopped and stored coherently by adiabatically controlling the classical field.Comment: 10 pages, 6 figure
    corecore