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We present a new method of calculating the distribution function and fluctuations for a Bose-
Einstein condensate (BEC) of N interacting atoms. The present formulation combines our previous
master equation and canonical ensemble quasiparticle techniques. It is applicable both for ideal and
interacting Bogoliubov BEC and yields remarkable accuracy at all temperatures. For the interacting
gas of 200 bosons in a box we plot the temperature dependence of the first four central moments
of the condensate particle number and compare the results with the ideal gas. For the interacting
mesoscopic BEC, as with the ideal gas, we find a smooth transition for the condensate particle
number as we pass through the critical temperature.

Bose-Einstein condensation (BEC) near the critical
temperature Tc is a fascinating subject. Indeed the time
line from the early studies of Uhlenbeck [1] concerning
the unphysical cusp at Tc in Einstein’s analysis, to the
“Grand canonical catastrophe” [2], arising from ill fated
attempts to describe fluctuations [3], covers most of the
twentieth century. Naturally, a major stimulus for the
present work is the pioneering BEC experiments in liq-
uid He-II [4] and in laser cooled gases [5]. The attendant
theoretical advances in the study of BEC in ideal and
interacting gases likewise constitute a rich field [6, 7].
Furthermore, subtle issues such as the statistics of con-

densate atoms in a mesoscopic system of N ∼ 102 − 103

particles are now of interest. Condensate fluctuations can
be measured by means of a scattering of series of short
laser pulses [8], see also [9]. We note that the BEC is
often referred to as an atom laser; indeed the problem
of BEC statistics near Tc is analogous to studying the
photon statistics of the laser in the passage from below
to above threshold [10, 11].
In the present Letter, we give, for the first time, a

simple, surprisingly accurate account of fluctuations in
an interacting Bogoliubov gas valid for all temperatures.
We omit, however, effects of interaction between Bogoli-
ubov quasiparticles since we treat a weakly interacting
gas. The analysis is based on a master equation approach
deriving from a union of the ideal gas (in the spirit of the
quantum theory of the laser) BEC treatment of the first
two papers in this series on the condensation of N bosons
[10] and the results for the interacting gas BEC obtained
based on the canonical ensemble quasiparticle formalism
[12].
We emphasize that although useful papers have been

published dealing with various limiting cases, so far there
has been no treatment of this problem valid at all tem-
peratures [3]. Ref. [12] presented analytical formulas for
all moments of the condensate particle number fluctua-
tions in the weakly interacting Bose gas. However, [12]
and other approaches (e.g. Ref. [13]) are only valid pro-
vided the average number of condensate particles is much
larger than its variance. However, near and above Tc this
is not true, and this causes the failure of such treatments.
For an ideal Bose gas the master equation approach

of [10] naturally includes the N particle constraint and
provides an analytical solution for the partition function
and fluctuations accurate at all temperatures, as shown
in Fig. 1. For an interacting gas, the problem of fluctu-
ations is rather delicate. In a recent paper [15] we gave
a preliminary master equation analysis for N interacting
atoms which accurately described the average number
of particles in the condensate. However the fluctuations
were handled less well. The present analysis gives all
central moments with remarkable accuracy when com-
pared to [12] below Tc. Above Tc the present results go
smoothly into the ideal gas limit as they must.
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FIG. 1: The variance for the condensate particle number as a
function of temperature for an ideal gas of N = 200 particles
in an isotropic harmonic trap obtained by the master equation
approach of [10] (solid line), “exact” numerical simulations in
the canonical ensemble (dots) and the grand canonical answer
(dashed line). Result of Refs. [2, 12] is plotted as dash-dot
line. Small dots show the thermodynamic limit formula of
Politzer [14].

The central tool used in the ideal gas analysis of [10]
and the interacting gas study of [15] was the laser-like
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master equation for the probability pn0
of finding n0

atoms in the condensate, given that there are N total
particles

1

κ
ṗn0

= −Kn0
(n0 + 1)pn0

+Kn0−1n0pn0−1−

Hn0
n0pn0

+Hn0+1(n0 + 1)pn0+1, (1)

where κ is an uninteresting rate constant, Hn0
and Kn0

are heating and cooling coefficients. In equilibrium the
rates of any two opposite processes are equal to each
other, e.g., Kn0

(n0 + 1)pn0
= Hn0+1(n0 + 1)pn0+1. The

detailed balance condition yields

pn0+1

pn0

=
Kn0

Hn0+1

. (2)

Since the occupation number of the ground state can-
not be larger than N there is a canonical ensemble con-
straint pN+1 = 0 and, hence, KN = 0. In contrast to
pn0

, the ratio pn0+1/pn0
as a function of n0 shows simple

monotonic behavior. We approximate Kn0
and Hn0

by a
few terms of the Taylor expansion near the point n0 = N

Kn0
= (N − n0)(1 + η) + α(N − n0)

2, (3)

Hn0
= H+ (N − n0)η + α(N − n0)

2. (4)

Parameters H, η and α are independent of n0; they are
functions of the occupation of the excited levels. We
derive them below by matching the first three central
moments in the low temperature limit with the result of
[12]. We note that the detailed balance equation (2) is the
Padé approximation [16] of the function pn0+1/pn0

. Padé
summation has proven to be useful in many applications,
including condensed-matter problems and quantum field
theory.
Eqs. (2)-(4) yield an analytical expression for the con-

densate distribution function

pn0
=

1

ZN

(N − n0 − 1 + x1)!(N − n0 − 1 + x2)!

(N − n0)!(N − n0 + (1 + η)/α)!
, (5)

where x1,2 = (η ±
√

η2 − 4αH)/2α and ZN is the nor-

malization constant determined by
N
∑

n0=0

pn0
= 1. In the

particular case η = α = 0 Eq. (5) reduces to

pn0
=

1

ZN

HN−n0

(N − n0)!
, (6)

where ZN = eHΓ(N + 1,H)/N ! is the partition function
and Γ is an incomplete gamma-function. For an ideal gas
Eq. (6) describes accurately the condensate statistics at
low temperature [10]. The statistics is not Poissonian

pn = n̄ne−n̄/n!, as would be expected for a coherent
state.
Using the distribution function (5) we find that, in the

validity range of [12] (at low T ), the first three central
moments µm ≡< (n0 − n̄0)

m > are

n̄0 = N −H, µ2 = (1 + η)H + αH2, (7)

µ3 = −H(1 + η + αH)(1 + 2η + 4αH). (8)

Eqs. (7), (8) thus yield

H = N − n̄0, η =
1

2

(

µ3

µ2

− 3 +
4µ2

H

)

, (9)

α =
1

H

(

1

2
−

µ2

H
−

µ3

2µ2

)

. (10)

On the other hand, the result of [12] for an interacting
Bogoliubov gas is (see also [13] for n̄0 and µ2)

n̄0 = N −

∑

k 6=0

[(

u2
k + v2k

)

fk + v2k
]

, (11)

µ2 =
∑

k 6=0

[

(1 + 8u2
kv

2
k)(f

2
k + fk) + 2u2

kv
2
k

]

, (12)

µ3 = −

∑

k 6=0

(

u2
k + v2k

) [

(1 + 16u2
kv

2
k)(2f

3
k + 3f2

k + fk)+

4u2
kv

2
k(1 + 2fk)

]

, (13)

where fk = 1/[exp(Ek/kBT ) − 1] is the number of ele-
mentary excitations with energy Ek present in the sys-
tem at thermal equilibrium, uk and vk are Bogoliubov
amplitudes. Substitute for n̄0, µ2 and µ3 in Eqs. (9),
(10) their expressions of Ref. [12] (11)-(13) yields the
unknown parameters H, η and α. The beauty of our
“matched asymptote” derivation is that the formulas for
H, η and α are applicable at all temperatures, i.e. not
only in the validity range of [12]. The distribution func-
tion (5) together with Eqs. (9), (10) provides complete
knowledge of the condensate statistics at all T . Taking
vk = 0 and uk = 1 in (11)-(13) we obtain the ideal gas
limit.
Next we test our method for an ideal gas (in a har-

monic trap). In this case an “exact” numerical simula-
tion in the canonical ensemble [7] is available for com-
parison. Results of such simulation are shown by dots in
Figs. 2 and 3. In Fig. 2 we plot the distribution func-
tion for the number of atoms in condensate at different
temperatures and N = 200. At T ≪ Tc the distribu-
tion shows a sharp peak near n̄0 and becomes broader at
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higher T . The present Eq. (5) (solid line) yields excel-
lent agreement with the “exact” dots at all temperatures.
Fig. 3 shows the average condensate particle number n̄0,
its variance, third and fourth central moments µm and
fourth cumulant κ4 [17] as a function of T for N = 200
particles in a harmonic trap. Solid lines are the result of
the present approach (we call it CNB5 [18]) which is in
remarkable agreement with the “exact” dots at all tem-
peratures both for µm and κ4. Central moments and
cumulants higher than fourth order are not shown here,
but they are also remarkably accurate at all tempera-
tures. Results of [12] are given by dashed lines which are
accurate only at sufficiently low T . Deviation of higher
order cumulants (m = 3, 4, . . .) from zero indicates that
the fluctuations are not Gaussian.
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FIG. 2: Distribution function for the condensate particle
number n0 at different temperature obtained by the present
approach (solid lines) and “exact” numerical simulations in
the canonical ensemble (dots). The results are obtained for
an ideal gas of N = 200 particles in an isotropic harmonic
trap.

Clearly our method passes the ideal gas test with fly-
ing colors. Please note the excellent agreement with the

exact analysis for the third central moment and fourth
cumulant κ4 given in Fig. 3.

Next we apply the present technique to N interact-
ing Bogoliubov particles confined in a box of volume V .
The interactions are characterized by the gas parame-
ter an1/3, where a is the s-wave scattering length and
n = N/V is the particle density. The energy of Bo-
goliubov quasiparticles Ek depends on n̄0, hence, the

equation n̄0 =
N
∑

n0=0

n0pn0
for n̄0 must be solved self-

consistently. In Fig. 4 we plot n̄0, the variance ∆n0,
third and fourth central moments as a function of T for
an ideal and interacting (an1/3 = 0.1) gas in the box.
Solid lines show the result of the present approach, while
[12] is represented by dashed lines. The present results
agree well for all µm with [12] in the range of its validity.
Near and above Tc [12] becomes inaccurate. However, the
results of the present method are expected to be accurate
at all T . Indeed, in the limit T ≫ Tc the present results
(unlike [12]) merge with those for the ideal gas. This is
physically appealing since at high T the kinetic energy
becomes much larger than the interaction energy and the
gas behaves ideally. Similar to the ideal gas, the interact-
ing mesoscopic BEC n̄0(T ) exhibits a smooth transition
when passing through Tc.

One can see from Fig. 4 that the repulsive interac-
tion stimulates BEC, and yields an increase in n̄0 at in-
termediate temperatures, as compared to the ideal gas.
This effect is known as “attraction in momentum space”
and occurs for energetic reasons [19]. Bosons in differ-
ent states interact more strongly than when they are in
the same state, and this favors multiple occupation of a
single one-particle state.

In conclusion, in this paper we presented a simple
method which, for the first time, yields an accurate de-
scription of the distribution function and fluctuations for
mesoscopic interacting Bogoliubov BEC in the canonical
ensemble at all temperatures. Our approach combines
the analytical results of [12] with the laser-like master
equation of [15].
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mants. New York: Cambridge University Press, 1996.
[17] Cumulants κm are defined as coefficients in Taylor expan-

sion lnΘn(u) =
∑

∞

m=1
κm(iu)m/m!, where Θn(u) is the

characteristic function Θn(u) = Tr
{

eiun̂ρ̂
}

. There are
simple relations between κm and central moments µm, in
particular, κ1 = n̄, κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3µ2

2,
κ5 = µ5 − 10µ2µ3 and κ6 = µ6 − 15µ2(µ4 − 2µ2

2). For
Gaussian distribution κm = 0, for m = 3, 4, . . ..

[18] The present paper is the fifth in the series of our Con-
densation of N Bosons papers.

[19] A. Leggett, Rev. Mod. Phys. 73, 307 (2001).

http://arxiv.org/abs/cond-mat/0607101


5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

20
40
60
80

100
120
140
160
180
200

CNB3
CNB5

canonical
   exact

N=200

<n
0>

T/Tc

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

5

10

15

20

CNB3

CNB5

N=200

n 0

T/Tc

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-5.0x104

0.0

5.0x104

1.0x105

1.5x105

2.0x105

CNB3

CNB5

4

<(n0-<n0>)4>

N=200

T/Tc

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1000

-500

0

500

1000

1500

CNB3

CNB5

N=200

<(
n 0

-<
n 0

>)
3 >

T/Tc

FIG. 3: Average condensate particle number < n0 >, its variance ∆n0 =
√

< (n0 − n̄0)2 >, third and fourth central moments
< (n0 − n̄0)

m > (m = 3, 4) and fourth cumulant κ4 as a function of temperature for an ideal gas of N = 200 particles in a
harmonic trap. Solid lines (CNB5) show the result of the present approach. [12] yields dashed lines (CNB3). Dots are “exact”
numerical simulation in the canonical ensemble. The temperature is normalized by the thermodynamic critical temperature
for the trap Tc = ~ωN1/3/kBζ(3)1/3, where ω is the trap frequency.
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FIG. 4: Average condensate particle number, its variance, third and fourth central moments as a function of temperature for
an ideal (an1/3 = 0) and interacting (an1/3 = 0.1) Bose gas of N = 200 particles in a box. Solid lines are the result of the
present approach. [12] yields dashed lines (CNB3). The temperature is normalized by the thermodynamic critical temperature

for the box Tc = 2π~2n2/3/kBMζ(3/2)2/3, where M is the particle mass.


