3,300 research outputs found

    Single Photon Subradiance: Quantum control of spontaneous emission and ultrafast readout

    Get PDF
    Recent work has shown that collective single photon emission from an ensemble of resonate two-level atoms, i.e. single photon superradiance, is a rich field of study. The present paper addresses the flip side of superradiance, i.e. subradiance. Single photon subradiant states are potentially stable against collective spontaneous emission and can have ultrafast readout. In particular it is shown how many atom collective effects provide a new way to control spontaneous emission by preparing and switching between subradiant and superradiant states.Comment: 17 pages, 6 figures, and 1 tabl

    From EIT photon correlations to Raman anti-correlations in coherently prepared Rb vapor

    Full text link
    We have experimentally observed switching between photon-photon correlations (bunching) and anti-correlations (anti-bunching) between two orthogonally polarized laser beams in an EIT configuration in Rb vapor. The bunching and anti-bunching sswitching occurs at a specific magnetic field strength.Comment: 4 pages and 3 figure

    On mechanisms that enforce complementarity

    Get PDF
    In a recent publication Luis and Sanchez-Soto arrive at the conclusion that complementarity is universally enforced by random classical phase kicks. We disagree. One could just as well argue that quantum entanglement is the universal mechanism. Both claims of universality are unjustified, however.Comment: 4 page

    Cooling a quantum circuit via coupling to a multiqubit system

    Full text link
    The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits are investigated. The particles may decay independently or collectively through their interaction with the environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator's quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can be faster for collectively interacting particles.Comment: 5 pages, 3 figure

    Heisenberg Limit Superradiant Superresolving Metrology

    Get PDF
    We propose a superradiant metrology technique to achieve the Heisenberg limit super-resolving displacement measurement by encoding multiple light momenta into a three-level atomic ensemble. We use 2N2N coherent pulses to prepare a single excitation superradiant state in a superposition of two timed Dicke states that are 4N4N light momenta apart in momentum space. The phase difference between these two states induced by a uniform displacement of the atomic ensemble has 1/4N1/4N sensitivity. Experiments are proposed in crystals and in ultracold atoms

    Fluorescence interferometry

    Full text link
    We describe an interferometer based on fluorescent emission of radiation of two qubits in quasi-one-dimensional modes. Such a system can be readily realized with dipole emitters near conducting surface-plasmonic nanowires or with superconducting qubits coupled to coplanar waveguide transmission lines.Comment: 7 pages, 2 figure

    Preventing Multipartite Disentanglement by Local Modulations

    Get PDF
    An entangled multipartite system coupled to a zero-temperature bath undergoes rapid disentanglement in many realistic scenarios, due to local, symmetry-breaking, differences in the particle-bath couplings. We show that locally controlled perturbations, addressing each particle individually, can impose a symmetry, and thus allow the existence of decoherence-free multipartite entangled systems in zero-temperature environments.Comment: 5 pages, 2 figure

    Generation of two-mode field squeezing through selective dynamics in cavity QED

    Full text link
    We propose a scheme for the generation of a two-mode field squeezed state in cavity QED. It is based on two-channel Raman excitations of a beam of three-level atoms with random arrival times by two classical fields and two high-Q resonator modes. It is shown that by suitably choosing the intensities and detunings of fields the dynamical processes can be selective and two-mode squeezing between the cavity modes can be generated at steady state. This proposal does not need the preparation of the initial states of atoms and cavity modes, and is robust against atomic spontaneous decay.Comment: 4 pages,2 figure
    • …
    corecore