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We propose a superradiant metrology technique to achieve the Heisenberg limit super-resolving
displacement measurement by encoding multiple light momenta into a three-level atomic ensemble.
We use 2N coherent pulses to prepare a single excitation superradiant state in a superposition of
two timed Dicke states that are 4N light momenta apart in momentum space. The phase difference
between these two states induced by a uniform displacement of the atomic ensemble has 1/4N
sensitivity. Experiments are proposed in crystals and in ultracold atoms.

PACS numbers: 42.50.Dv, 03.67.Mn, 85.40.Hp

Introduction.—Measurements play a key role in
physics, not only in the direct sense of defining stan-
dards [1–3], but also in verifying predictions of theories
such as gravitational waves [4, 5]. Using N quantum
resources independently, the sensitivity of a parameter
φ scales ∆φ ∼ 1/

√
N determined by the central limit

theorem. This 1/
√
N scaling is the so-called shot-noise

limit [6, 7], which can be broken by squeezed states or
entanglement [8–14]. For example, the photons can be
prepared in a Schrödinger cat state, such as the N00N
state [15], 1/

√
2 (|N0〉+ |0N〉), where |N0〉 means all the

photons are in one arm of the interferometer and |0N〉
means all the photons are in the other arm. According to
the unbiased Cramér-Rao bound, the sensitivity can be
enhanced to ∆φ ∼ 1/N , the Heisenberg limit. Another
scheme to reach to the Heisenberg limit is to use the N -
atom Schrödinger cat state, the so-called Greenberger-
Horne-Zeilinger (GHZ) state [16–20].

The metrology with N00N states and GHZ states indi-
cates that we can improve the sensitivity of one observ-
able by preparing a Schrödinger cat state of its conju-
gate observable [11]. The sensitivity of the displacement
x can therefore be improved by preparing a Schrödinger
cat state of the momentum p. The N00N state composed
by two optical modes with opposite momenta seems to
be a good candidate, but the fragile high photon number
N00N state is very difficult to prepare, to preserve, and to
manipulate [21–27]. On the other hand, a single photon
can be easily prepared in an entangled state of two oppo-
site momenta, 1/

√
2 (|1k0−k〉+ |0k1−k〉) [28]. To manip-

ulate this entangled state, we can guide it to a collection
of atoms and the momentum can be translated into the
phase of the collective excitation, 1/

√
2 (|bk〉+ |b−k〉),

where

|bk〉 ≡
1√
Na

Na
∑

j=1

exp (ikxj) |c1, c2, ..., bj , ...cNa
〉 (1)

is the timed Dicke state [29] and Na is the number of
atoms. Here we prepare a pencil-like atomic ensemble

along x̂ direction and the wave vector k = kx̂. |bj〉 and
|cj〉 are the excited and the ground states of the atom
at position xj . A uniform displacement of the atomic
ensemble relative to the lab reference frame including all
optical devices, r0, attaches opposite phases to the two
timed Dicke states [30], 1/

√
2
(

eikr0 |bk〉+ e−ikr0 |b−k〉
)

,
which can be easily verified by replacing xj with xj + r0
in Eq. (1). The phases can be retrieved by the inter-
ference pattern of the photon signal emitted in the two
opposite directions, cos2 (kr0). The whole process can
be understood as follows. We first freeze the standing
wave pattern composed by the entangled two modes ±k

in the atomic ensemble. Any displacement of the atomic
ensemble moves the standing wave pattern stored in it
simultaneously, which also correspondingly moves the in-
terference pattern of the stored single photon after it is
released. If we prepare the ensemble in an atomic N00N
state with entangled N -fold collective excitations [31],
the interference pattern has N times higher resolution
[30]. However, the efficiency in preparing these repeti-
tive N00N states drops exponentially with N [30, 32, 33].
In this Letter, we show that the “momentum

Schrödinger cat state”

|KAT(N)〉 = (−1)N
1√
2
(|b−2Nk〉+ i|a2Nk〉) , (2)

with large number N can be prepared. Here “a” stands
for another atomic level and |ak〉 is defined in the same
way as Eq. (1) by replacing b with a. Instead of atomic
N00N states with high atomic excitations, we only need
single excitation superradiant states which can be pre-
pared with high efficiency [34]. We propose an experi-
mental scheme based on ground states Raman transitions
to avoid dephasing.
Store multiple light momenta.—To motivate the under-

lying physical mechanisms, we first show how to write
multiple light momenta into an atomic ensemble. We
use a three-level scheme as shown in Fig. 1 (a). We first
prepare the atomic ensemble in the superradiant state
|b0〉 = 1√

Na

∑Na

j=1 |c1, c2, ..., bj, ...cNa
〉 by absorbing a sin-
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FIG. 1: (Color online) (a) Three-level configuration for
photon momentum encoding. (b) Two counter-propagating
modes collectively couple the transition between |b〉 and |a〉.
(c) Timed Dicke state transport with π-pulses of k1 (black)
and k2 (blue). They are applied alternatively to the atomic
ensemble for N times each to transfer the state from |b0〉
to |b

−2Nk1
〉. (d) The schematic spatial phase oscillation of

|a
−k1

〉 and |b
−20k1

〉.

gle photon with momentum perpendicular to x̂-axis. In
that direction, the atomic medium is thin and uniform
probability amplitude for each atom is easily achieved.
Then we prepare two sequences of counter-propagating
π-pulses in modes k1 = k1x̂ and k2 = −k1x̂ [Fig. 1 (b)],
and send them to the atomic ensemble alternatively, as
shown in Fig. 1 (c). These two modes couple the transi-
tion from |b〉 to another state |a〉, rather than the ground
state |c〉. The π-pulses are represented by the following
unitary transform under the rotating-wave approxima-
tion

Ul = exp



i
π

2

Na
∑

j=1

(

eiklxj+iφlσ+
j + e−iklxj−iφlσ−

j

)



 , (3)

where l = 1, 2 for forward and backward pulses. σ+
j =

|bj〉〈aj | and σ−
j = |aj〉〈bj | are the raising and lowering

operators for the jth atom. φl is the phase of field l.
In the following, we set φ1 = φ2 = 0. At time t1, we

apply U1 to |b0〉,

U1|b0〉 = i|a−k1
〉. (4)

The atomic ensemble transit to |a−k1
〉 by collectively

emitting a photon in mode k1, and therefore acquire mo-
mentum −~k1 based on momentum conservation. In cal-
culating Eq. (4) we should note that the terms σ+,−

j σ+,−
j′ 6=j

and the higher order ones in the expansion of Ul applied
to the single photon Dicke state lead to zero.
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FIG. 2: (Color online) Pictorial scheme of the displacement
metrology with “momentum Schrödinger cat state” based on
Ramsey interferometry. The white circles represent the col-
lective ground state |c1, c2, ..., cNa〉. The red and blue circles
represent the superradiant sates |bk〉 and |ak〉. The single
black arrow represent the single-photon Raman transition be-
tween the ground state and |b0〉 or |a0〉. The double black ar-
row represents the π

2
-pulse Uba

(

π

2

)

. The red and blue arrows
represent the π-pulses U1 and U2 with the arrow’s direction
indicating the transition direction.

At time t2, we send the π-pulse of k2 and the state
evolves to

U2i|a−k1
〉 = −|b−2k1

〉. (5)

The atomic ensemble acquire another momentum ~k2 =
−~k1 by collectively absorbing a photon from mode k2.
The pulse pair U2U1 encode a total momentum −2k1

in the atomic ensemble. The above process can be re-
peated for another N − 1 times and the final state be-
comes (−1)

N |b−2Nk1
〉 with a large effective momentum

−2N~k1. Instead of using recoil momenta like in the
atom interferometry [35], the large momentum stored in
the atomic ensemble is transferred to rapid oscillations
of the phase correlation of timed Dicke states, as shown
in Fig. 1 (d). The enhanced oscillation allows improved
precision for measuring the displacement. It is as if the
ruler has a finer graduation.
Superradiant metrology.—By combining the above

mechanism and the technique of Ramsey interferometry,
we can measure a displacement to the Heisenberg limit.
The whole scheme is sketched in Fig. 2. We first prepare
a superposition state of |b0〉 and |a0〉. Then the π-pulses
drive these two states in two opposite directions in mo-
mentum space to obtain a “momentum Schrödinger cat
state”.
We show the explicit procedure based on a three-level

Raman configuration which has been proved to have de-
coherence time as long as 1 minute [36, 37]. The atom
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FIG. 3: (Color online) Superradiant metrology with Raman
transitions. (a) Atomic levels of Raman transitions. |a〉, |b〉
and |c〉 are now the three Zeeman ground state sublevels. The
atomic ensemble are initially prepared in state |c〉. A single
photon Raman transition (green arrows) prepares the atomic
ensemble in a timed Dicke state of |b〉. Then the Raman
pulses drive the transition between |b〉 and |a〉. (b) Raman π-
pulses U1 and U2. They are composed by a long pulse driving
d ↔ a transition and a short pulse driving b ↔ d transition.
The short pulse goes through the atomic ensemble when the
atoms are uniformly covered by the long pulse.

has three degenerate ground states which can be lifted by
a Zeeman magnetic field along x̂, as shown in Fig. 3 (a).
We first pump all the atoms to state |c〉. An off-resonant
coherent field with x̂-polarization induces a Raman tran-
sition via intermediate state |d〉 to prepare the atomic
ensemble in the state |b0〉, accompanied by the emission
of a right circular polarized Stokes photon [30, 38, 39],
whose frequency and polarization can be detected as sig-
natures of a successful preparation of the state |b0〉. A
Raman π

2 -pulse [40] which couples the transition from |b〉
to |a〉 transforms |b0〉 to

Uba

(π

2

)

|b0〉 =
1√
2
(|b0〉+ i|a0〉) , (6)

where Uba

(

π
2

)

=
∑Na

j=1

(

cos π
4 Ij + i sin π

4σ
x
j

)

. Now we
introduce Raman transitions with combined wave vec-
tors k1 = kbd − kda and k2 = −k1, as shown in Fig. 3
(b). Here kbd and kda are the wave vectors of the two
circularly polarized modes which couple |b〉 ↔ |d〉 and
|d〉 ↔ |a〉 transitions respectively. We adopt a counter-
propagating configuration along x̂-axis to achieve a max-
imum combined wave vector [41].
The π-pulses of these Raman transitions can still

be represented by Eq. (3). We apply U1 to the
state in Eq. (6) and we obtain 1/

√
2 (i|a−k1

〉 − |bk1
〉).

We then apply U2 to the above sate and we obtain
−1/

√
2 (|b−2k1

〉+ i|a2k1
〉). Repeating the above oper-

ations another N − 1 times, we get the “momentum
Schrödinger cat state”,

|KAT(N)〉 = (−1)N
1√
2
(|b−2Nk1

〉+ i|a2Nk1
〉) . (7)

Now we move the atomic ensemble collectively by a dis-
tance r0 with a uniform optical force or gravity, etc. [30],
so that the old position xj = x′

j + r0 where x′
j is the new

position. |KAT(N)〉 is expressed in Eq. (8) with this

displacement. We must redefine the timed Dicke states
with the new positions of the atoms in the lab frame.
Replacing xj with x′

j + r0, Eq. (7) becomes

(−1)N
1√
2

(

e−i2Nk1r0 |b−2Nk1
〉+ iei2Nk1r0 |a2Nk1

〉
)

,

(8)
where the two timed Dicke states are redefined with x′

j

and have a relative phase 4Nk1r0. The center-of-mass
Hamiltonian only brings trivial global phases. We neglect
the dynamic phase difference, which can be easily com-
pensated in experiments or data analysis. To retrieve the
phase, we apply the inverse π-pulse sequences (U1U2)

N

to the state in Eq.(8). Because the unitary transform is
reversible, we will finally get

|Ψ〉 = 1√
2

(

e−i2Nk1r0 |b0〉+ iei2Nk1r0 |a0〉
)

. (9)

A Raman π
2 -pulse Uba(

π
2 ) transforms the above state to

− i sin (2Nk1r0) |b0〉+ i cos (2Nk1r0) |a0〉. (10)

The probability of the state |b0〉, Pb = sin2 (2Nk1r0) can
be obtained by observing the retrieved photon via the
forward Raman transition |b〉 → |d〉 → |c〉 after a pump-
ing pulse coupling |b〉 to |d〉 is applied along x̂. Here
the Raman transition |b〉 → |d〉 → |c〉 will happen rather
than |b〉 → |d〉 → |a〉 due to a superradiant enhancement
of the vacuum interaction for the former one [38]. The
probability of |a0〉, Pa = cos2 (2Nk1r0) can be simultane-
ously measured in a different direction. The population
difference

P = Pb − Pa = − cos (4Nk1r0) (11)

is the signal from which the displacement r0 can be mea-
sured. The noise is ∆P = |sin (4Nk1r0)| and the phase
sensitivity

∆(k1r0) =
∆P

|∂P/∂(k1r0)|
=

1

4N
(12)

scales at the Heisenberg limit.
Discussion.—It has been argued that the sensitivity in

Eq. (12) only shows the accuracy in determining the last
digits of k1r0 due to the periodicity of the signal P . How-
ever, we can take some iterative procedure to determine
all the digits without destroying the 1/N scaling [11, 13].
Especially, to verify existing theories like gravitational
wave, the phase change from the theoretical prediction
is small enough to be within half period of the signal
P . The improvement of the sensitivity can be seen by
expanding Pb near r0 = 0, Pb ≈ 4N2k21r

2
0 . The proba-

bility of detection is enhanced by N2. As in most inter-
ferometry experiments, r0 can be changed continuously
and the relevant physical quantity like the gravitational
constant can be measured from the interference pattern
rather than a single point.
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FIG. 4: (Color online) Numerical simulation of P for Gaus-
sian noisy π-pulses with area variation ∆S = 0.1 and phase
variation ∆φ = 0.01. N = 16 (black squares) and 32 (red
triangles).

The imperfection of the π-pulses in amplitude and in
phase due to environmental noises, such as oscillations
and rotations of optical devices, can reduce the phase
sensitivity. We suppose the area S and the phase φ
of the π-pulses have Gaussian distribution with varia-
tions ∆S,∆φ ≪ 1/

√
N . The phase sensitivity is then

∆ (k1r0) =
[

4N
(

1−N∆S2/2
)]−1

+∆φ/
√
4N . We sim-

ulate the interference patterns in Fig. 4 for ∆S = 0.1
and ∆φ = 0.01. The super-resolving metrology is demon-
strated by the reduction of the oscillation period of the
interference pattern to λ1/4N where λ1 = 2π/k1 is the
effective wavelength. Although ∆S reduces the visibility
and ∆φ blurs the interference pattern, the phase sensi-
tivities for N = 16 and 32 are still enhanced to 1/55 and
1/98, marginally lower than the Heisenberg limit 1/64
and 1/128 whereas much higher than the shot-noise limit
1/8 and 1/11.

The pure dephasing between the ground states due to
environmental noise fields does not make the “momen-
tum Schrödinger cat state” more fragile as the number
N increases. Although there are 2N light momenta en-
coded in the media, the ensemble only contain a single
excitation whose dephasing is independent of N . The rel-
ative motion between the atoms will reduce the visibility
by a factor e−ǫ2N2

as we will discuss later. Therefore,
to propose an experimental implementation, a solid sys-
tem where the relative distance between atoms are fixed
is preferred, especially the earth-ion-doped crystal, such
as Pr3+:Y2SiO5 whose quantum memory storage time
reaches to 1 minute [37, 41]. The three states |a〉, |b〉 and
|c〉 can be chosen from the ground state 3H4. The inter-
mediate state |d〉 is a sublevel of the excited state 1D2.
The Zeeman splitting can be ∼ MHz. The control pulses
of U1,2 can have duration of 10µs to avoid transition to
unwanted levels. The prepare and read stage of the mea-
surement can cost time 10ms for N = 10. Then for the
transition wavelength ∼600nm, the resolution is 7.5nm.
The crystal can free fall 100nm within a millisecond in
gravity field. Therefore the whole measurement can be
completed well within the decoherence time of 1 minute.

For a proof of principle verification of the mechanism,
the ultra cold atoms can also work. The obstacle is that
the thermal motions of the atoms will randomize the rel-
ative phase between the atoms, and reduce the visibility
P = −e−2(Nk1vmτ)2 cos (4Nk1r0) where vm =

√

2kBT/m
is the most probable velocity and τ is the overall time
cost by the measurement. The phase sensitivity is thus
∆ (k1r0) = eǫ

2N2

/4N , where ǫ =
√
2k1vmτ , roughly the

number of wavelengths the atoms travelled. We use a co-
propagating configuration in the Raman pulses to achieve
a small k1 and consequently a small ǫ. Take 87Rb as an
example [30, 36], the three levels are chosen to be the
three Zeeman sublevels of 52S1/2, F = 1. The inter-
mediate state is 52P1/2, F = 2, mF = 0. If we use
nanosecond Raman transition pulses with GHz positive
detuning, the π-pulses require a moderate average power
10W/cm2. At temperature T ∼ µK, vm ∼ 1cm/s. We
suppose the whole measurement costs time τ = 100µs
during which a displacement of 10µm can be achieved
by optical force [30], whereas the random displacement
is vmτ ∼ 1µm. If the effective wavelength in the Ra-
man transition is λ1 ∼ 200µm, for resolution of 5µm,
we need N = 10. The interference pattern becomes
P ≈ −0.82 cos (40k1r0). The phase sensitivity 1/32 still
exceeds the shot-noise limit 1/

√
40 ∼ 1/6.

The conventional Heisenberg limit metrology by entan-
gling N atoms or photons is difficult to be realized when
N is large. Recent developments in this field achieved 5-
photon N00N states [42], 8-photon GHZ states [43] and
14-ion GHZ states [44]. The fast decoherence of multi-
particle entangled states limits their realization of large
N . Our protocol circumvents this obstacle by consuming
the quantum resources without directly entangling them.
The physical quantity that we use is the light momentum.
We consume one photon from each light pulse and store
its momentum as a frozen spin wave of atoms. This stor-
age has been proved to be very robust [45]. Our single
excitation scheme has the following advantages. First,
its decoherence rate is independent of N , the number of
the quantum resources we consumed. Second, we avoid
the difficult collective detection of N particles, which is
usually required for N00N states and GHZ states. Third,
we do not need multiple passes of the probe such as in
the single photon entanglement-free scheme [28].

Atoms are not consumed in the measurement. The
number of atoms Na has no relation with the 1/N scal-
ing. We need Na to be large (usually in the order of 106

for cold atoms) and distributed in a pencil-like region
much longer than λ1 for good directionality of the signal
photon. We do not have atom loss if we use crystals. For
cold atoms, if the remaining atoms are ηNa, the signal is
reduced to ηP , which has no influence on the scaling.

In conclusion, we propose a Heisenberg limit metrology
with an atomic ensemble in a “momentum Schrödinger
cat state” prepared by encoding multiple photon mo-
menta into the phase correlations of timed Dicke states.
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We analysed the feasibility of proof-of-principle experi-
ments in Pr3+:Y2SiO5 crystals and in ultra cold 87Rb
atoms. Since light momenta transfer to atoms already
exceeds 100 with current technology [35], our protocol is
promising to improve the scalability of Heisenberg limit
metrology by one order.
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ers, C. O’Brien, M. Kim, L. Yuan, K. Wang, and H. Cai
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support of the National Science Foundation Grants No.
PHY-1241032 (INSPIRE CREATIV) and PHY-1068554
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