158 research outputs found

    Steady state behaviour in atomic three-level lambda and ladder systems with incoherent population pumping

    Get PDF
    The steady state in three-level lambda and ladder systems is studied. It is well-known that in a lambda system this steady state is the coherent population trapping state, independent of the presence of spontaneous emission. In contrast, the steady state in a ladder system is in general not stable against radiative decay and exhibits a minimum in the population of the ground state. It is shown that incoherent population pumping destroys the stability of the coherent population trapping state in the lambda system and suppresses a previously discovered sharp dip in the steady state response. In the ladder system the observed minimum disappears in the presence of an incoherent pump on the upper transition.Comment: 4 pages, RevTex, 5 figures, to appear in Phys. Rev.

    Towards T1-limited magnetic resonance imaging using Rabi beats

    Full text link
    Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NV's 14N can be extracted from the beating oscillations. Second, the Rabi beats under V-type microwave excitation of the three hyperfine manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure

    Entanglement in bipartite generalized coherent states

    Full text link
    Entanglement in a class of bipartite generalized coherent states is discussed. It is shown that a positive parameter can be associated with the bipartite generalized coherent states so that the states with equal value for the parameter are of equal entanglement. It is shown that the maximum possible entanglement of 1 bit is attained if the positive parameter equals 2\sqrt{2}. The result that the entanglement is one bit when the relative phase between the composing states is π\pi in bipartite coherent states is shown to be true for the class of bipartite generalized coherent states considered.Comment: 10 pages, 4 figures; typos corrected and figures redrawn for better clarit

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    On the EPR-type Entanglement in the Experiments of Scully et Al. I. The Micromaser Case and Delayed-choice Quantum Erasure

    Full text link
    Delayed-choice erasure is investigated in two-photon two-slit experiments that are generalizations of the micromaser experiment of Scully et al. [Scully, M. O. et al. Nature 351, 111-116 (1991)]. Applying quantum mechanics to the localization detector, it is shown that erasure with delayed choice in the sense of Scully, has an analogous structure as simple erasure. The description goes beyond probabilities. The EPR-type disentanglement, consisting in two mutually incompatible distant measurements, is used as a general framework in both parts of this study. Two simple coherence cases are shown to emerge naturally, and they are precisely the two experiments of Scully et al. The treatment seems to require the relative-reality-of-unitarily-evolving-state (RRUES) approach. Besides insight in the exoeriments, this study has also the goal of insight in quantum mechanics. The question is if it can be more than just a "book-keeping device" for calculating probabilities as Scully et al. modestly and cautiously claim.Comment: Latex2e, no figures, this manuscript is the first part of a study in two part

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3Ă—10183\times 10^{18} eV, and strong evidence for a suppression near 6Ă—10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Selective quantum evolution of a qubit state due to continuous measurement

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector. The information provided by the detector is taken into account to describe the evolution during a particular realization of measurement process. We discuss the Bayesian formalism for such ``selective'' evolution of an individual qubit and apply it to several solid-state setups. In particular, we show how to suppress the qubit decoherence using continuous measurement and the feedback loop.Comment: 15 pages (including 9 figures

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
    • …
    corecore