1,060 research outputs found

    Ganglion cell complex analysis in glaucoma patients: what can it tell us?

    Get PDF
    Glaucoma is a group of optic neuropathies characterized by a progressive degeneration of retina ganglion cells (RGCs) and their axons that precedes functional changes detected on the visual field. The macular ganglion cell complex (GCC), available in commercial Fourier-domain optical coherence tomography, allows the quantification of the innermost retinal layers that are potentially involved in the glaucomatous damage, including the retinal nerve fiber (RNFL), ganglion cell and inner plexiform layers. The average GCC thickness and its related parameters represent a reliable biomarker in detecting preperimetric glaucomatous damage. The most accurate GCC parameters are represented by average and inferior GCC thicknesses, and they can be associated with progressive visual field loss. Although the diagnostic accuracy increases with more severe glaucomatous damage and higher signal strength values, it is not affected by increasing axial length, resulting in a more accurate discrimination of glaucomatous damage in myopic eyes with respect to the traditional RNFL thickness. The analysis of the structure-function relationship revealed a good agreement between the loss in retinal sensitivity and GCC thickness. The use of a 10-2° visual field grid, adjusted for the anatomical RGCs displacement, describes more accurately the relationship between RGCs thickness and visual field sensitivity loss

    Last tesserae of a fading mosaic: floristic census and forest vegetation survey at Parche di Bilello (south-western Sicily, Italy), a site needing urgent protection measures.

    Get PDF
    This paper illustrates the botanic heritage of Parche di Bilello, a site located in the municipality of Castelvetrano. The study area hosts several woodland fragments dominated by Olea europaea var. sylvestris, Quercus suber and Quercus ilex, respectively. According to historical data, these nuclei represent the last remnants of an open forestland which covered a much wider coastal area between Mazara del Vallo and Sciacca until the end of Middle Age. Phytosociological relevés were focused on these forest nuclei, probably the most representative of south-western Sicily, which correspond to three habitats included in the 92/43 EEC Directive (9320, 9330 and 9340, respectively) and represent the final stage of three different edaphic series. Wild olive forests probably dominated on sandy calcareous soils, holm oaks prevailed on steep calcareous and N-exposed slopes. In contrast, cork oaks mostly occurred on sandy subacid soils issuing from pedogenetic processes on palaeodunes. Moreover, field surveys allowed to list 331 vascular plant taxa. Among them, Linaria multicaulis subsp. humilis, Orobanche balsensis and Serapias orientalis subsp. siciliensis are new to Trapani Province. Detailed information on the current distribution and the synecology of several plant taxa of high biogeographic and conservation interest is also provided. The study site also hosts one habitat of priority interest (6220, i.e. xerophilous Mediterranean perennial grasslands and annual swards) and two species protected by international laws, i.e. the orchid Ophrys lunulata and the lichen Teloschistes chrysophthalmus. Considering the high value of its natural heritage, this territory deserves the adoption of more effective protection measures. For this reason the authors recommend its inclusion as a new Site of Community Interest within the Sicilian Natura 2000 network

    © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Natural Hazards and Earth System Sciences

    Get PDF
    Abstract. A major impediment to an understanding of the links between climate and landscape change, has been the relatively coarse resolution of landscape response measures (rates of weathering, sediment production, erosion and transport) relative to the higher resolution of the climatic signal (precipitation and temperature on hourly to annual time scales). A combination of high temporal and spatial resolution dendroclimatic and dendrogeomorphic approaches were used to study relationships between climatic variability and hillslope and valley floor dynamics in a small drainage basin in the Colorado Plateau of northeastern Arizona, USA Dendrogeomorphic and vegetation evidence from slopes and valley bottoms, including root exposure, bending of trunks, change in plant cover and burial and exhumation of valley bottom trees and shrubs, suggest that the currently observe

    A modified femtosecond laser technique for anterior capsule contraction syndrome

    Get PDF
    Anterior capsule contraction syndrome (ACCS) is a rare, late complication of cataract surgery, associated with impairment of visual function. In this paper, we describe a new surgical technique to treat ACCS by femtosecond laser procedure. The femtosecond laser was used to perform an anterior capsulotomy with a customized size, in order to avoid IOL damage. After ophthalmic viscosurgical device injection in the anterior chamber, the anterior capsule flap was separated from the IOL surface by gentle hydrodissection. This manoeuvre enabled an easy and safe removal of the fibrotic material by vitreal microscissors. Our technique allowed a complete removal of the fibrotic material and opening of the capsule, with immediate complete visual acuity recovery without IOL damage. In conclusion, femtosecond laser appears to be safe and effective for treatment of ACCS with long-lasting efficacy

    Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus

    Get PDF
    Increasing levels of freshwater contaminants, mainly due to anthropogenic activities, have resulted in a great deal of interest in finding new eco-friendly, cost-effective and efficient methods for remediating polluted waters. The aim of this work was to assess the feasibility of using a green microalga Desmodesmus sp., a cyanobacterium Nostoc sp. and a hemicryptophyte Ampelodesmos mauritanicus to bioremediate a water polluted with an excess of nutrients (nitrogen and phosphorus) and heavy metals (copper and nickel). We immediately determined that Nostoc sp. was sensitive to metal toxicity, and thus Desmodesmus sp. was chosen for sequential tests with A. mauritanicus. First, A. mauritanicus plants were grown in the ‘polluted’ culture medium for seven days and were, then, substituted by Desmodesmus sp. for a further seven days (14 days in total). Heavy metals were shown to negatively affect both the growth rates and nutrient removal capacity. The sequential approach resulted in high metal removal rates in the single metal solutions up to 74% for Cu and 85% for Ni, while, in the bi-metal solutions, the removal rates were lower and showed a bias for Cu uptake. Single species controls showed better outcomes; however, further studies are necessary to investigate the behavior of new specie

    The Discordance of Mass-Loss Estimates for Galactic O-Type Stars

    Get PDF
    We have determined accurate values of the product of the mass-loss rate and the ion fraction of P^{4+}, Mdot q(P^{4+}), for a sample of 40 Galactic O-type stars by fitting stellar-wind profiles to observations of the P V resonance doublet obtained with FUSE, ORFEUS/BEFS, and Copernicus. When P^{4+} is the dominant ion in the wind, Mdot q(P^{4+}) approximates the mass-loss rate to within a factor of 2. Theory predicts that P^{4+} is the dominant ion in the winds of O7-O9.7 stars, though an empirical estimator suggests that the range from O4-O7 may be more appropriate. However, we find that the mass-loss rates obtained from P V wind profiles are systematically smaller than those obtained from fits to Halpha emission profiles or radio free-free emission by median factors of about 130 (if P^{4+} is dominant between O7 and O9.7) or about 20 (if P^{4+} is dominant between O4 and O7). These discordant measurements can be reconciled if the winds of O stars in the relevant temperature range are strongly clumped on small spatial scales. We use a simplified two-component model to investigate the volume filling factors of the denser regions. This clumping implies that mass-loss rates determined from "density squared" diagnostics have been systematically over-estimated by factors of 10 or more, at least for a subset of O stars. Reductions in the mass-loss rates of this size have important implications for the evolution of massive stars and quantitative estimates of the feedback that hot-star winds provide to their interstellar environments.Comment: 26 pages, 4 figures; accepted for publication in Ap

    Sustainability in Aquaponics: Industrial Spirulina Waste as a Biofertilizer for Lactuca sativa L. Plants

    Get PDF
    Aquaponics represents an alternative to traditional soil cultivation. To solve the problem of nutrient depletion that occurs in this biotechnological system, the application of a spirulina-based biofertilizer was assessed. The microalgal waste used in this study came from industrial processing. Four different dilutions of the supernatant portion of this waste were sprayed on lettuce plants cultivated in an aquaponics system installed at the Botanical Gardens of the Tor Vergata University of Rome. The biofertilizer was characterized to evaluate its amount of macro- and micronutrients. The analysis conducted on the plants involved both morpho-biometric aspects and qualitative–quantitative measurements. The experiments showed that the spirulina extract had a positive effect on the growth and nutraceutical content of the lettuce plants; the obtained results highlighted that a dilution of 75% was the best for treatment. The use of the proposed organic and recycled fertilizer could increase the sustainability of crop cultivation and promote the functioning of aquaponics systems

    GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    Full text link
    The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R=50,000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process elements (Y, Sr). We found average half-solar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe] and enhancement of [N/Fe], consistent with standard CN burning, and low 12C/13C abundance ratios (between 9 and 11), which require extra-mixing processes in the stellar interiors during the post-main sequence evolution. We also found local standard of rest V(LSR)=106 km/s and heliocentric V(HEL)=90 km/s radial velocities with a dispersion of 2.3 km/s. The inferred radial velocities, abundances, and abundance patterns of RSGC3 are very similar to those previously measured in the other two young clusters of the Scutum complex, RSGC1 and RSGC2, suggesting a common kinematics and chemistry within the Scutum complex

    Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG

    Get PDF
    Aims Determining the intensity of lines and continuum airglow emission in the H-band is important for the design of faint-object infrared spectrographs. Existing spectra at low/medium resolution cannot disentangle the true sky-continuum from instrumental effects (e.g. diffuse light in the wings of strong lines). We aim to obtain, for the first time, a high resolution infrared spectrum deep enough to set significant constraints on the continuum emission between the lines in the H-band. Methods During the second commissioning run of the GIANO high-resolution infrared spectrograph at La Palma Observatory, we pointed the instrument directly to the sky and obtained a deep spectrum that extends from 0.97 to 2.4 micron. Results The spectrum shows about 1500 emission lines, a factor of two more than in previous works. Of these, 80% are identified as OH transitions; half of these are from highly excited molecules (hot-OH component) that are not included in the OH airglow emission models normally used for astronomical applications. The other lines are attributable to O2 or unidentified. Several of the faint lines are in spectral regions that were previously believed to be free of line emission. The continuum in the H-band is marginally detected at a level of about 300 photons/m^2/s/arcsec^2/micron, equivalent to 20.1 AB-mag/arcsec^2. The observed spectrum and the list of observed sky-lines are published in electronic format. Conclusions Our measurements indicate that the sky continuum in the H-band could be even darker than previously believed. However, the myriad of airglow emission lines severely limits the spectral ranges where very low background can be effectively achieved with low/medium resolution spectrographs. We identify a few spectral bands that could still remain quite dark at the resolving power foreseen for VLT-MOONS (R ~6,600).Comment: 7 pages, 4 figures, to be published in Astronomy & Astrophysic
    • …
    corecore