299 research outputs found

    A preliminary determination of normal accelerations on racing airplanes

    Get PDF
    Rules and methods for insuring safe structural strength of racing airplanes used in the major air meets in this country have recently been considered. Acceleration records made in racing airplanes during actual air races were therefore considered desirable, and the NACA undertook the measurement of acceleration of loads on airplanes during all conditions of flight. Accelerations were measured on four airplanes at the Miami All-American Races in January 1934 and January 1935. The airplanes were representative of the fastest limited and unlimited displacement racing airplanes in current use in this country. Records during two races, or flights, on the race course were obtained with each airplane. The maximum normal acceleration recorded was 6.2g and the minimum was -1.2g

    A flight investigation of the effect of mass distribution and control setting on the spinning of the XN2Y-1 airplane

    Get PDF
    The investigation of the effect of mass distribution on the spinning of airplanes initiated with tests on the NY-1 airplane has been continued by tests on another airplane in order to increase the scope of the information and to observe particularly the behavior of an airplane that shows considerable change in sideslip angle for its various conditions of spinning. The XN2Y-1 naval training biplane was used for the present tests in which changes of ballast along the longitudinal and lateral axes and changes of aileron, stabilizer, and elevator settings were made. The effects of these changes on the steady spin were measured in flight

    The forces and moments acting on parts of the XN2Y-1 airplane during spins

    Get PDF
    The magnitudes of the yawing moments produced by various parts of an airplane during spins have previously been found to be of major importance in determining the nature of the spin. Discrepancies in resultant yawing moments determined from model and full-scale tests, however, have indicated the probable importance of scale effect on the model. In order to obtain data for a more detailed comparison between full-scale and model results, flight tests were made to determine the yawing moments contributed by various parts of an airplane in spins. The inertia moment was determined by the usual measurement of the spinning motion, and the aerodynamic yawing moments on the fuselage, fin, and rudder were determined by pressure-distribution measurements over these parts of the airplane. The wing yawing moment was determined by taking the difference between the gyroscopic moment and the fuselage, fin, and rudder moments. The numerical values of the wing yawing moments were found to be of the same order of magnitude as those measured in wind tunnels

    A Flight Investigation of the Spinning of the F4B-2 Biplane with Various Loads and Tail Surfaces

    Get PDF
    A flight investigation of the spinning of the F4B-2 single-seat fighter airplane was made for the purpose of finding modifications that would eliminate dangerous spin tendencies exhibited by this type of airplane in service. The effects on steady spins and on recoveries of changing the loading, enlarging the fin areas, changing the elevator plan form, and raising the horizontal surfaces, were determined

    Further measurements of normal accelerations on racing airplanes

    Get PDF
    The work of collecting acceleration data for racing airplanes during races, started in January 1934, has been continued by obtaining similar data in the airplanes winning first and second places in the 1935 Thompson Trophy Race. Records were taken in the Howard Racer "Mr. Mulligan" and in the Wittman D-12 Racer. The maximum positive accelerations were generally smaller than those recorded in other airplanes during earlier races; the maximum in the Howard Racer was 2.8 g, and one value of 4.25 g was obtained in the Wittman Racer. Minimum values were as low as -0.55 g in the Howard Racer and 0.3 g in the Wittman Racer

    Large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock

    Get PDF
    Large parallel (\leq 100 mV/m) and perpendicular (\leq 600 mV/m) electric fields were measured in the Earth's bow shock by the vector electric field experiment on the Polar satellite. These are the first reported direct measurements of parallel electric fields in a collisionless shock. These fields exist on spatial scales comparable to or less than the electron skin depth (a few kilometers) and correspond to magnetic field-aligned potentials of tens of volts and perpendicular potentials up to a kilovolt. The perpendicular fields are amongst the largest ever measured in space, with energy densities of ϵ0E2/nkbTe\epsilon_0 E^2/ n k_b T_e of order 10%. The measured parallel electric field implies that the electrons can be demagnetized, which may result in stochastic (rather than coherent) electron heating

    Solar Wind-Magnetosphere Coupling During an Isolated Substorm Event: A Multispacecraft ISTP Study

    Get PDF
    Multispacecraft data from the upstream solar wind, polar cusp, and inner magnetotail are used to show that the polar ionosphere responds within a few minutes to a southward IMF turning, whereas the inner tail signatures are visible within ten min from the southward turning. Comparison of two subsequent substorm onsets, one during southward and the other during northward IMF, demonstrates the dependence of the expansion phase characteristics on the external driving conditions. Both onsets are shown to have initiated in the midtail, with signatures in the inner tail and auroral oval following a few minutes later

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic
    corecore