320 research outputs found

    Highly electronegative metallic contacts to semiconductors using polymeric sulfur nitride

    Get PDF
    The Schottky barriers formed on n‐ZnS and n‐ZnSe by polymeric sulfur nitride have been compared to barriers formed by Au. Barrier energies as determined by photoresponse, current‐voltage, and capacitance‐voltage methods show that (SN)_x is approximately 1.0 eV higher than Au on n‐ZnS and 0.3–0.4 eV higher than Au on n‐ZnSe. We believe that this is the first report of any metallic contact more electronegative than Au

    Tomographic Magnification of Lyman Break Galaxies in The Deep Lens Survey

    Full text link
    Using about 450,000 galaxies in the Deep Lens Survey, we present a detection of the gravitational magnification of z > 4 Lyman Break Galaxies by massive foreground galaxies with 0.4 < z < 1.0, grouped by redshift. The magnification signal is detected at S/N greater than 20, and rigorous checks confirm that it is not contaminated by any galaxy sample overlap in redshift. The inferred galaxy mass profiles are consistent with earlier lensing analyses at lower redshift. We then explore the tomographic lens magnification signal by splitting our foreground galaxy sample into 7 redshift bins. Combining galaxy-magnification cross-correlations and galaxy angular auto-correlations, we develop a bias-independent estimator of the tomographic signal. As a diagnostic of magnification tomography, the measurement of this estimator rejects a flat dark matter dominated Universe at > 7.5{\sigma} with a fixed \sigma_8 and is found to be consistent with the expected redshift-dependence of the WMAP7 {\Lambda}CDM cosmology.Comment: 12 pages, 9 figures, Accepted to MNRA

    Exploring Dark Energy with Next-Generation Photometric Redshift Surveys

    Get PDF
    The coming decade will be an exciting period for dark energy research, during which astronomers will address the question of what drives the accelerated cosmic expansion as first revealed by type Ia supernova (SN) distances, and confirmed by later observations. The mystery of dark energy poses a challenge of such magnitude that, as stated by the Dark Energy Task Force (DETF), nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. The lack of multiple complementary precision observations is a major obstacle in developing lines of attack for dark energy theory. This lack is precisely what next-generation surveys will address via the powerful techniques of weak lensing (WL) and baryon acoustic oscillations (BAO) -- galaxy correlations more generally -- in addition to SNe, cluster counts, and other probes of geometry and growth of structure. Because of their unprecedented statistical power, these surveys demand an accurate understanding of the observables and tight control of systematics. This white paper highlights the opportunities, approaches, prospects, and challenges relevant to dark energy studies with wide-deep multiwavelength photometric redshift surveys. Quantitative predictions are presented for a 20000 sq. deg. ground-based 6-band (ugrizy) survey with 5-sigma depth of r~27.5, i.e., a Stage 4 survey as defined by the DETF

    Slow-roll, acceleration, the Big Rip and WKB approximation in NLS-type formulation of scalar field cosmology

    Full text link
    Aspects of non-linear Schr\"{o}dinger-type (NLS) formulation of scalar (phantom) field cosmology on slow-roll, acceleration, WKB approximation and Big Rip singularity are presented. Slow-roll parameters for the curvature and barotropic density terms are introduced. We reexpress all slow-roll parameters, slow-roll conditions and acceleration condition in NLS form. WKB approximation in the NLS formulation is also discussed when simplifying to linear case. Most of the Schr\"{o}dinger potentials in NLS formulation are very slowly-varying, hence WKB approximation is valid in the ranges. In the NLS form of Big Rip singularity, two quantities are infinity in stead of three. We also found that approaching the Big Rip, weff→−1+2/3qw_{\rm eff}\to -1 + {2}/{3q}, (q<0)(q<0) which is the same as effective phantom equation of state in the flat case.Comment: [7 pages, no figure, more reference added, accepted by JCAP

    A Spectroscopic Survey of Faint Quasars in the SDSS Deep Stripe: I. Preliminary Results from the Co-added Catalog

    Full text link
    In this paper we present the first results of a deep spectroscopic survey of faint quasars in the Sloan Digital Sky Survey (SDSS) Southern Survey, a deep survey carried out by repeatedly imaging a 270 deg^2 area. Quasar candidates were selected from the deep data with good completeness over 0<z<5, and 2 to 3 magnitudes fainter than the SDSS main survey. Spectroscopic follow-up was carried out on the 6.5m MMT with Hectospec. The preliminary sample of this SDSS faint quasar survey (hereafter SFQS) covers ~ 3.9 deg^2, contains 414 quasars, and reaches g=22.5. The overall selection efficiency is ~ 66% (~ 80% at g<21.5); the efficiency in the most difficult redshift range (2<z<3) is better than 40%. We use the 1/V_{a} method to derive a binned estimate of the quasar luminosity function (QLF) and model the QLF using maximum likelihood analysis. The best model fits confirm previous results showing that the QLF has steep slopes at the bright end and much flatter slopes (-1.25 at z<2.0 and -1.55 at z>2.0) at the faint end, indicating a break in the QLF slope. Using a luminosity-dependent density evolution model, we find that the quasar density at M_{g}<-22.5 peaks at z~2, which is later in cosmic time than the peak of z~2.5 found from surveys of more luminous objects. The SFQS QLF is consistent with the results of the 2dF QSO Redshift Survey, the SDSS, and the 2dF-SDSS LRG and QSO Survey, but probes fainter quasars. We plan to obtain more quasars from future observations and establish a complete faint quasar sample with more than 1000 objects over 10 deg^2.Comment: 25 pages, 13 figures, accepted for publication in A

    Quasinormal modes of a black hole surrounded by quintessence

    Full text link
    Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massless scalar field perturbation around the black hole which is surrounded by the static and spherically symmetric quintessence. Our result shows that due to the presence of quintessence, the scalar field damps more rapidly. Moreover, we also note that the quintessential state parameter ϔ\epsilon (the ratio of pressure pqp_q to the energy density ρq\rho_q) play an important role for the quasinormal frequencies. As the state parameter ϔ\epsilon increases the real part increases and the absolute value of the imaginary part decreases. This means that the scalar field decays more slowly in the larger ϔ\epsilon quintessence case.Comment: 7 pages, 3 figure

    Quasinormal modes of gravitational perturbation around a Schwarzschild black hole surrounded by quintessence

    Full text link
    In this paper, the quasinormal modes of gravitational perturbation around a Schwarzschild black hole surrounded by quintessence were evaluated by using the third-order WKB approximation. Due to the presence of quintessence, the gravitational wave damps more slowly

    Photometric Redshifts of Quasars

    Get PDF
    We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a sample of 2625 quasars, we show that photo-z determination is even possible for z<=2.2 despite the lack of a strong continuum break that robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within delta z = 0.2; the fraction of correct photometric redshifts is even better for z>3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of on the order of 10^6 quasars candidates in addition to the 10^5 quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.Comment: 29 pages, 8 figures, submitted to A

    Stability of a vacuum nonsingular black hole

    Full text link
    This is the first of series of papers in which we investigate stability of the spherically symmetric space-time with de Sitter center. Geometry, asymptotically Schwarzschild for large rr and asymptotically de Sitter as r→0r\to 0, describes a vacuum nonsingular black hole for m≄mcrm\geq m_{cr} and particle-like self-gravitating structure for m<mcrm < m_{cr} where a critical value mcrm_{cr} depends on the scale of the symmetry restoration to de Sitter group in the origin. In this paper we address the question of stability of a vacuum non-singular black hole with de Sitter center to external perturbations. We specify first two types of geometries with and without changes of topology. Then we derive the general equations for an arbitrary density profile and show that in the whole range of the mass parameter mm objects described by geometries with de Sitter center remain stable under axial perturbations. In the case of the polar perturbations we find criteria of stability and study in detail the case of the density profile ρ(r)=ρ0e−r3/r02rg\rho(r)=\rho_0 e^{-r^3/r_0^2 r_g} where ρ0\rho_0 is the density of de Sitter vacuum at the center, r0r_0 is de Sitter radius and rgr_g is the Schwarzschild radius.Comment: 18 pages, 8 figures, submitted to "Classical and Quantum Gravity

    An Empirical Characterization of Extended Cool Gas Around Galaxies Using MgII Absorption Features

    Full text link
    We report results from a survey of MgII absorbers in the spectra of background QSOs that are within close angular distances to a foreground galaxy at z<0.5, using the Magellan Echellette Spectrograph. We have established a spectroscopic sample of 94 galaxies at a median redshift of = 0.24 in fields around 70 distant background QSOs (z_QSO>0.6), 71 of which are in an 'isolated' environment with no known companions and located at rho <~ 120 h^-1 kpc from the line of sight of a background QSO. The rest-frame absolute B-band magnitudes span a range from M_B-5log h=-16.4 to M_B-5log h=-21.4 and rest-frame B_AB-R_AB colors range from B_AB-R_AB~0 to B_AB-R_AB~1.5. Of these 'isolated' galaxies, we find that 47 have corresponding MgII absorbers in the spectra of background QSOs and rest-frame absorption equivalent width W_r(2796)=0.1-2.34 A, and 24 do not give rise to MgII absorption to sensitive upper limits. Our analysis shows that (1) Wr(2796) declines with increasing distance from 'isolated' galaxies but shows no clear trend in 'group' environments; (2) more luminous galaxies possess more extended MgII absorbing halos with the gaseous radius scaled by B-band luminosity according to R_gas=75x(L_B/L_B*)^(0.35+/-0.03) h^{-1} kpc; (3) there is little dependence between the observed absorber strength and galaxy intrinsic colors; and (4) within R_gas, we find a mean covering fraction of ~70% for absorbers of Wr(2796)>=0.3 A and ~80% for absorbers of Wr(2796)>=0.1 A. The lack of correlation between Wr(2796) and galaxy colors suggests a lack of physical connection between the origin of extended MgII halos and recent star formation history of the galaxies. Finally, we discuss the total gas mass in galactic halos as traced by MgII absorbers. We also compare our results with previous studies.Comment: 20 pages, 13 figures; to appear in the Astrophysical Journal 2010 May 10 issue; a version with higher resolution figures can be found at http://lambda.uchicago.edu/public/tmp/mage_apj.pd
    • 

    corecore