351 research outputs found

    Messenger activity of ribonucleic acid form yeast mitochondria

    Full text link

    Redox-Dependent Modulation of T-Type Ca2+ Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P

    Get PDF
    Aims: Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. Results: SP acutely inhibited T-type voltage-gated Ca2+ channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca2+ channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K+ channels described earlier. Innovation: Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca2+ current and concurrent enhancement of anti-algesic M-type K+ current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. Conclusion: SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP

    Piezo1 channel activation mimics high glucose as a stimulator of insulin release

    Get PDF
    Glucose and hypotonicity induced cell swelling stimulate insulin release from pancreatic Ī²-cells but the mechanisms are poorly understood. Recently, Piezo1 was identified as a mechanically-activated nonselective Ca2+ permeable cationic channel in a range of mammalian cells. As cell swelling induced insulin release could be through stimulation of Ca2+ permeable stretch activated channels, we hypothesised a role for Piezo1 in cell swelling induced insulin release. Two rat Ī²-cell lines (INS-1 and BRIN-BD11) and freshly-isolated mouse pancreatic islets were studied. Intracellular Ca2+ measurements were performed using the fura-2 Ca2+ indicator dye and ionic current was recorded by whole cell patch-clamp. Piezo1 agonist Yoda1, a competitive antagonist of Yoda1 (Dooku1) and an inactive analogue of Yoda1 (2e) were used as chemical probes. Piezo1 mRNA and insulin secretion were measured by RT-PCR and ELISA respectively. Piezo1 mRNA was detected in both Ī²-cell lines and mouse islets. Yoda1 evoked Ca2+ entry was inhibited by Yoda1 antagonist Dooku1 as well as other Piezo1 inhibitors gadolinium and ruthenium red, and not mimicked by 2e. Yoda1, but not 2e, stimulated Dooku1-sensitive insulin release from Ī²-cells and pancreatic islets. Hypotonicity and high glucose increased intracellular Ca2+ and enhanced Yoda1 Ca2+ influx responses. Yoda1 and hypotonicity induced insulin release were significantly inhibited by Piezo1 specific siRNA. Pancreatic islets from mice with haploinsufficiency of Piezo1 released less insulin upon exposure to Yoda1. The data show that Piezo1 channel agonist induces insulin release from Ī²-cell lines and mouse pancreatic islets suggesting a role for Piezo1 in cell swelling induced insulin release. Hence Piezo1 agonists have the potential to be used as enhancers of insulin release

    Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study

    Get PDF
    The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)(4) has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells

    Plasma 25-Hydroxyvitamin D Concentration and Metabolic Syndrome Among Middle-Aged and Elderly Chinese Individuals

    Get PDF
    OBJECTIVEā€”To evaluate the association between 25-hydroxyvitamin D [25(OH)D] and metabolic syndrome in the Chinese population. RESEARCH DESIGN AND METHODSā€”Plasma 25(OH)D was measured in a cross-sectional sample of 1,443 men and 1,819 women aged 50ā€“70 years from Beijing and Shanghai. Metabolic syndrome was defined according to the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian Americans. Fasting plasma glucose, insulin, lipid profile, A1C, and inflammatory markers were measured. RESULTSā€”The geometric mean of plasma 25(OH)D was 40.4 nmol/l, and percentages of vitamin D deficiency [25(OH)D <50 nmol/l] and insufficiency [50 ā‰¤ 25(OH)D <75 nmol/l] were 69.2 and 24.4%, respectively. Compared with the highest 25(OH)D quintile (ā‰„57.7 nmol/l), the odds ratio for metabolic syndrome in the lowest quintile (ā‰¤28.7 nmol/l) was 1.52 (95% CI 1.17ā€“1.98, Ptrend=0.0002P_{trend} = 0.0002) after multiple adjustment. Significant inverse associations also existed between 25(OH)D and individual metabolic syndrome components plus A1C. Moreover, we observed significant inverse associations of 25(OH)D with fasting insulin and the insulin resistance index (homeostasis model assessment of insulin resistance [HOMA-IR]) in overweight and obese individuals (BMI ā‰„24 kg/m2) but not in their normal-weight counterparts (test for interaction: P=0.0363P = 0.0363 and 0.01870.0187 for insulin and HOMA-IR, respectively). CONCLUSIONSā€”Vitamin D deficiency is common in the middle-aged and elderly Chinese population, and a low 25(OH)D level is significantly associated with an increased risk of having metabolic syndrome and insulin resistance. Prospective studies and randomized clinical trials are warranted to determine the role of 25(OH)D in the development of metabolic syndrome and related metabolic diseases
    • ā€¦
    corecore