32 research outputs found

    Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels

    Get PDF
    Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large

    Bioaccumulation and ecotoxicity of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships

    Drop-in biofuels offer strategies for meeting California's 2030 climate mandate

    No full text
    In 2015, California established a mandate that requires on-road greenhouse gas (GHG) emissions to be reduced by 40% below 1990 levels by 2030. We explore the feasibility of meeting this goal by large-scale commercialization of drop-in biofuels. Drop-in biofuels, although not clearly defined, are a class of fuels that can be produced from biomass and blended with either crude oil or finished fuels without requiring equipment retrofits. This article focuses on thermochemical routes at or near commercialization. We provide a bottom-up, spatially explicit cost analysis to evaluate whether California can meet its 2030 GHG reduction target with drop-in fuels alone. A takeaway from our analysis is that drop-in fuels, if their performance is consistent with small-scale and simulated results, can be viable low-carbon substitutes for gasoline and diesel. We find that California can meet, and even exceed, its 2030 GHG emissions target for on-road vehicles with drop-in biofuels alone, but this requires use of biomass resources located outside the state. Meeting the 40% reduction target in a cost-effective manner requires pyrolysis of herbaceous agricultural residues (96% of total fuel output) and the conversion of woody residues via methanol-to-gasoline (4%). This scale of production would require 58 million metric tons of biomass feedstock, or 20% of total available biomass residues in the United States. For comparison, California is responsible for 11% of transportation-related petroleum consumption in the US. The approximately 5 billion gallons (19 billion liters) per year of drop-in fuel would displace 30% of gasoline and 60% of diesel demand in California. If electricity offset credits are eliminated, the target can be met with a similar scale of production, but methanol-to-gasoline becomes the dominant route (>99%), biomass requirements increase by 33%, and average production costs increase by 20%. Following this policy pathway would increase national biofuel production by 30% relative to 2015 production levels
    corecore