66 research outputs found

    The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission measurements

    Get PDF
    The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Nano-Scale Convective Heat Transfer of Vertically Aligned Carbon Nanotube Arrays

    Get PDF
    The trend of miniaturization in electronics has led to much greater heat densities within computer chips, demanding high performance heat sinks at smaller and smaller scales. A vertically aligned array of carbon nanotubes could function analogously to a conventional fin or pillar heat sink. Using a nano-porous aluminum oxide template, aligned carbon nanotubes were grown by chemical vapor deposition, and processing parameters were varied for comparison. By applying a constant heat input, the steady state temperature was measured for different surface morphologies, enabling insight into nano-scale convection properties

    Responsible biosecurity and risk mitigation for laboratory research on emerging pathogens of amphibians

    Get PDF
    The increasing study of emerging wildlife pathogens and a lack of policy or legislation regulating their translocation and use has heightened concerns about laboratory escape, species spillover, and subsequent epizootics among animal populations. Responsible self-regulation by research laboratories, in conjunction with institutional-level safeguards, has an important role in mitigating pathogen transmission and spillover, as well as potential interspecies pathogenesis. A model system in disease ecology that highlights these concerns and related amelioration efforts is research focused on amphibian emerging infectious diseases. Whereas laboratory escape of amphibian pathogens has not been reported and may be rare compared with introduction events from trade or human globalization, the threat that novel disease outbreaks with mass mortality effects pose to wild populations warrants thorough biosecurity measures to ensure containment and prevent spillover. Here, we present a case study of the laboratory biosecurity concerns for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans. We conclude that proactive biosecurity strategies are needed to integrate researcher and institutional oversight of aquatic wildlife pathogens generally, and we call for increased national and international policy and legislative enforcement. Furthermore, taking professional responsibility beyond current regulations is needed as development of legal guidance can be slow at national and international levels. We outline the need for annual laboratory risk assessments, comprehensive training for all laboratory personnel, and appropriate safeguards specific to pathogens under study. These strategies are critical for upholding the integrity and credibility of the scientific community and maintaining public support for research on wildlife diseases.</p

    Thermal Characterization of Aerospace Structures

    No full text

    Responsible biosecurity and risk mitigation for laboratory research on emerging pathogens of amphibians

    Get PDF
    The increasing study of emerging wildlife pathogens and a lack of policy or legislation regulating their translocation and use has heightened concerns about laboratory escape, species spillover, and subsequent epizootics among animal populations. Responsible self-regulation by research laboratories, in conjunction with institutional-level safeguards, has an important role in mitigating pathogen transmission and spillover, as well as potential interspecies pathogenesis. A model system in disease ecology that highlights these concerns and related amelioration efforts is research focused on amphibian emerging infectious diseases. Whereas laboratory escape of amphibian pathogens has not been reported and may be rare compared with introduction events from trade or human globalization, the threat that novel disease outbreaks with mass mortality effects pose to wild populations warrants thorough biosecurity measures to ensure containment and prevent spillover. Here, we present a case study of the laboratory biosecurity concerns for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans. We conclude that proactive biosecurity strategies are needed to integrate researcher and institutional oversight of aquatic wildlife pathogens generally, and we call for increased national and international policy and legislative enforcement. Furthermore, taking professional responsibility beyond current regulations is needed as development of legal guidance can be slow at national and international levels. We outline the need for annual laboratory risk assessments, comprehensive training for all laboratory personnel, and appropriate safeguards specific to pathogens under study. These strategies are critical for upholding the integrity and credibility of the scientific community and maintaining public support for research on wildlife diseases
    • …
    corecore