52,430 research outputs found

    On the Electronic Spectroscopy of Closed Shell Cations Derived From Resonance Stabilized Radicals: Insights From Theory and Franck-Condon Analysis

    Get PDF
    Context. Recent attention has been directed on closed-shell aromatic cations as potential carriers of the diffuse interstellar bands. The spectra of mass-selected, matrix-isolated benzylium, and tropylium cations were recently reported. The visible spectrum of benzylium exhibits a large Franck-Condon (FC) envelope, inconsistent with diffuse interstellar band carriers. Aims. We perform a computational analysis of the experimentally studied benzylium spectrum before extending the methods to a range of larger, closed-shell aromatic cations to determine the potential for this class of systems as diffuse interstellar band carriers. Methods. Density functional theory (DFT), time-dependant ((TD)DFT), and multi-configurational self-consistent field second-order perturbation theory (MRPT2) methods in concert with multidimensional FC analysis is used to model the benzylium spectrum. These methods are extended to larger closed-shell aromatic hydrocarbon cations derived from resonance-stabilized radicals, which are predicted to show strong S0 → Sn transitions in the visible region. The ionization energies of a range of these systems are also calculated by DFT. Results. The simulated benzylium spectrum was found to yield excellent agreement with the experimental spectrum showing an extended progression in a low frequency (510 cm-1) ring distortion mode. The FC progression was found to be significantly quenched in the larger species: 1-indanylium, 1-naphthylmethylium, and fluorenium. Excitation and ionization energies of the closed-shell cations were found to be consistent with diffuse interstellar band carriers, with the former lying in the visible range and the latter straddling the Lyman limit in the 13−14 eV range. Conclusions. Large closed-shell polycyclic aromatic hydrocarbon cations remain viable candidate carriers of the diffuse interstellar bands

    Quantifying Finite Temperature Effects in Atom Chip Interferometry of Bose-Einstein Condensates

    Full text link
    We quantify the effect of phase fluctuations on atom chip interferometry of Bose-Einstein condensates. At very low temperatures, we observe small phase fluctuations, created by mean-field depletion, and a resonant production of vortices when the two clouds are initially in anti-phase. At higher temperatures, we show that the thermal occupation of Bogoliubov modes makes vortex production vary smoothly with the initial relative phase difference between the two atom clouds. We also propose a technique to observe vortex formation directly by creating a weak link between the two clouds. The position and direction of circulation of the vortices is subsequently revealed by kinks in the interference fringes produced when the two clouds expand into one another. This procedure may be exploited for precise force measurement or motion detection.Comment: 7 pages, 5 figure

    State-space model identification and feedback control of unsteady aerodynamic forces

    Full text link
    Unsteady aerodynamic models are necessary to accurately simulate forces and develop feedback controllers for wings in agile motion; however, these models are often high dimensional or incompatible with modern control techniques. Recently, reduced-order unsteady aerodynamic models have been developed for a pitching and plunging airfoil by linearizing the discretized Navier-Stokes equation with lift-force output. In this work, we extend these reduced-order models to include multiple inputs (pitch, plunge, and surge) and explicit parameterization by the pitch-axis location, inspired by Theodorsen's model. Next, we investigate the na\"{\i}ve application of system identification techniques to input--output data and the resulting pitfalls, such as unstable or inaccurate models. Finally, robust feedback controllers are constructed based on these low-dimensional state-space models for simulations of a rigid flat plate at Reynolds number 100. Various controllers are implemented for models linearized at base angles of attack α0=0,α0=10\alpha_0=0^\circ, \alpha_0=10^\circ, and α0=20\alpha_0=20^\circ. The resulting control laws are able to track an aggressive reference lift trajectory while attenuating sensor noise and compensating for strong nonlinearities.Comment: 20 pages, 13 figure

    GRID PRICING FOR FED CATTLE: AN EMPIRICAL ANALYSIS

    Get PDF
    Weekly grid premium and discount price date for fed cattle have been collected over a 3-year period. The grid price data are combined with carcass data (2590 South Dakota slaughter steers) to investigate the variability in the average weekly carcass premium is affected by changes in packer-determined grid premiums and discounts on a weekly basis. The three-stage recursive model is then estimated using an autoregressive procedure. The results of the empirical analysis indicated that among all grid premiums and discounts, it is the choice-select discount that plays the dominant role in determining weekly changes in the average weekly carcass premium (discount).slaughter cattle, grid pricing, average pricing, value-based-marketing, Marketing,

    Predicting velocity growth: a time series perspective

    Get PDF
    Velocity of money ; Forecasting

    Market Segmentation Practices of Retail Crop Input Firms

    Get PDF
    The farmers targeted by crop input retailers may be divided into distinct groups or segments, but retail crop input firms vary in their ability to implement strategies to serve individual segments. In this study, segmentation practices among cooperatives and independently owned crop input retailers were explored. Addressing gaps between Best’s seven-step market segmentation framework and retailer practices will help practitioners serve evolving farmer-customers.market segmentation, target marketing, crop inputs, distribution channel, retailer, Marketing, Q10, Q13,

    Spontaneous creation of non-zero angular momentum modes in tunnel-coupled two-dimensional degenerate Bose gases

    Full text link
    We investigate the dynamics of two tunnel-coupled two-dimensional degenerate Bose gases. The reduced dimensionality of the clouds enables us to excite specific angular momentum modes by tuning the coupling strength, thereby creating striking patterns in the atom density profile. The extreme sensitivity of the system to the coupling and initial phase difference results in a rich variety of subsequent dynamics, including vortex production, complex oscillations in relative atom number and chiral symmetry breaking due to counter-rotation of the two clouds.Comment: 7 pages, 5 figure

    Design definition of a mechanical capacitor

    Get PDF
    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly
    corecore