466 research outputs found

    Registration of N614, A3N615, N616, and N617 Shattercane Genetic Stocks with Cytoplasmic or Nuclear Male Sterility and Juicy or Dry Midribs

    Get PDF
    Four shattercane [Sorghum bicolor subsp. drummondii (Nees ex Steud.) de Wet ex Davidse] genetic stocks—N614 (Reg. No. GS-652, PI 665684), A3N615 (Reg. No. GS-651, PI 665683), N616 (Reg. No. GS-653, PI 665685), and N617 (Reg. No. GS-654, PI 665686)—with A3 cytoplasmic male sterility or the nuclear male sterility gene ms3 containing either juicy (dd) or dry (DD) culms were developed jointly by the USDA-ARS; the Iowa Agricultural and Home Economics Experiment Station, College of Agriculture and Life Sciences, Iowa State University; and the Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska. The stocks were released in July 2011. The source material for these genetic stocks was isolated from an archetypical shattercane population found near Lincoln, NE. Release of these genetic stocks makes available shattercane lines with both A3 cytoplasmic male sterility, and ms3 genetic (nuclear) male sterility to facilitate crossing. These genetic stocks also contain juicy (dd) or dry (DD) culms, a visible genetic marker to facilitate screening progeny resulting from crosses. The genetic stocks have immediate application for basic research involving gene flow from cultivated sorghum [Sorghum bicolor (L.) Moench] to shattercane and on the fitness of offspring resulting from such crosses

    Field damage of sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) with reduced lignin levels by naturally occurring insect pests and pathogens

    Get PDF
    Sorghum (Sorghum bicolor (L.) Moench) brown midrib (bmr) mutant lines have reduced levels of lignin, which is a potentially useful trait for bioenergy production, but the effects of this trait on insect and plant pathogen interactions are unknown under field conditions. Field-grown bmr6, bmr12, and wild-type (WT) plants were examined for insect and disease damage. In most cases, observed frequency, population, or leaf area damage caused by insects or pathogens on bmr6 or bmr12 plants were not greater than those observed on WT plants in the field or laboratory assays. European corn borers [Ostrinia nubilalis (HĂĽbner)(Lepidoptera: Pyralidae)] often caused lower amounts of leaf damage to bmr6 leaves compared to bmr12 and sometimes WT leaves in the field study. Leaf damage by corn earworms [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] and fall armyworms [Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)] in laboratory assays was often lower for bmr versus WT leaves. Incidence of disease lesions was significantly higher on bmr6 compared to WT plants for one of three samplings in 2011, but the opposite trend was observed overall in 2012 and no significant differences were noted in 2013. When corn earworms and fall armyworms were fed the excised pith, bmr6 and/or bmr12 pith caused significant morality to one or both insect species in all 3 years. Damage variability between the 3 years may have been due to hotter and drier than normal conditions in 2012. Thus, bmr lines of sorghum suitable for bioenergy production have potential for sustainable production in the field

    Hospital-Based Harm Reduction Interventions: A Systematic Review

    Get PDF
    Background: In the U.S., the number of hospitalized patients diagnosed with a substance use disorder (SUD; e.g., opioid use disorder, alcohol use disorder) is growing at an alarming rate. Often negatively impacted by stigma, homelessness and physical and mental comorbidities, this vulnerable patient population may benefit from the use of hospital-based harm reduction interventions (HHRIs) to improve overall hospital care experiences and negative health outcomes. Purpose: To examine how harm reduction principles have been successfully applied to HHRIs resulting in decreased negative health outcomes associated with SUD, improved healthcare provider-patient relationships, and reduced financial burden of healthcare systems. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and flow diagram were utilized for this systematic review. Nineteen studies met the eligibility criteria for inclusion in the review. Implications: Four consistent themes that either inhibit or facilitate the implementation of HHRIs (e.g., establishing specialized SUD hospital units, employing peer support specialists, utilizing the clinical opiate withdrawal scale) were identified: ethical responsibility, stigma, structural changes to hospital systems, and noted gaps associated with post-discharge care. Conclusion: HHRIs are a useful treatment option to manage the unique needs associated with the growing SUD patient population

    Efficacy of Singular and Stacked \u3ci\u3ebrown midrib 6\u3c/i\u3e and \u3ci\u3e12\u3c/i\u3e in the Modification of Lignocellulose and Grain Chemistry

    Get PDF
    In sorghum, brown midrib (bmr) 6 and 12 impair the last two steps of monolignol synthesis. bmr genes were introduced into grain sorghum to improve the digestibility of lignocellulosic tissues for grazing or bioenergy uses following grain harvest. Near-isogenic grain sorghum hybrids (AWheatland X RTx430) were developed containing bmr6, bmr12, and the bmr6 bmr12 double mutant (stacked), and their impacts were assessed in a two-year field study. The bmr genes did not significantly impact grain or lignocellulosic tissue yield. Lignocellulosic tissue from bmr6, bmr12, and stacked hybrids had reduced lignin content and increased in vitro dry matter digestibility (IVDMD) compared to those of the wild type (WT). The lignin content of the stacked lignocellulosic tissue was further reduced compared to that of bmr6 or bmr12. Surprisingly, bmr12 modestly increased carbohydrates in lignocellulosic tissue, and bmr6 increased fiber and lignin content in grain. These data indicate that bmr6 and bmr12 have broader effects on plant composition than merely lignin content, which has promising implications for both livestock utilization and bioenergy conversion

    Efficacy of Singular and Stacked \u3ci\u3ebrown midrib 6\u3c/i\u3e and \u3ci\u3e12\u3c/i\u3e in the Modification of Lignocellulose and Grain Chemistry

    Get PDF
    In sorghum, brown midrib (bmr) 6 and 12 impair the last two steps of monolignol synthesis. bmr genes were introduced into grain sorghum to improve the digestibility of lignocellulosic tissues for grazing or bioenergy uses following grain harvest. Near-isogenic grain sorghum hybrids (AWheatland X RTx430) were developed containing bmr6, bmr12, and the bmr6 bmr12 double mutant (stacked), and their impacts were assessed in a two-year field study. The bmr genes did not significantly impact grain or lignocellulosic tissue yield. Lignocellulosic tissue from bmr6, bmr12, and stacked hybrids had reduced lignin content and increased in vitro dry matter digestibility (IVDMD) compared to those of the wild type (WT). The lignin content of the stacked lignocellulosic tissue was further reduced compared to that of bmr6 or bmr12. Surprisingly, bmr12 modestly increased carbohydrates in lignocellulosic tissue, and bmr6 increased fiber and lignin content in grain. These data indicate that bmr6 and bmr12 have broader effects on plant composition than merely lignin content, which has promising implications for both livestock utilization and bioenergy conversion

    Field damage of sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) with reduced lignin levels by naturally occurring insect pests and pathogens

    Get PDF
    Sorghum (Sorghum bicolor (L.) Moench) brown midrib (bmr) mutant lines have reduced levels of lignin, which is a potentially useful trait for bioenergy production, but the effects of this trait on insect and plant pathogen interactions are unknown under field conditions. Field-grown bmr6, bmr12, and wild-type (WT) plants were examined for insect and disease damage. In most cases, observed frequency, population, or leaf area damage caused by insects or pathogens on bmr6 or bmr12 plants were not greater than those observed on WT plants in the field or laboratory assays. European corn borers [Ostrinia nubilalis (HĂĽbner)(Lepidoptera: Pyralidae)] often caused lower amounts of leaf damage to bmr6 leaves compared to bmr12 and sometimes WT leaves in the field study. Leaf damage by corn earworms [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] and fall armyworms [Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)] in laboratory assays was often lower for bmr versus WT leaves. Incidence of disease lesions was significantly higher on bmr6 compared to WT plants for one of three samplings in 2011, but the opposite trend was observed overall in 2012 and no significant differences were noted in 2013. When corn earworms and fall armyworms were fed the excised pith, bmr6 and/or bmr12 pith caused significant morality to one or both insect species in all 3 years. Damage variability between the 3 years may have been due to hotter and drier than normal conditions in 2012. Thus, bmr lines of sorghum suitable for bioenergy production have potential for sustainable production in the field

    Temporal transcriptomic profiling elucidates sorghum defense mechanisms against sugarcane aphids

    Get PDF
    Background The sugarcane aphid (SCA; Melanaphis sacchari) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance. Results We used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors. Conclusions In summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory

    Resistance to greenbugs in the sorghum nested association mapping population

    Get PDF
    The greenbug, Schizaphis graminum, is a serious pest of sorghum (Sorghum bicolor). For the past several decades, resistant sorghum hybrids have been used to control greenbug populations. However, the durability of plant resistance is frequently challenged by evolution of new greenbug biotypes, and there is a continuous need for screening of resistant germplasm for its effective management in the field. Natural variation in sorghum plants/populations provides distinct approaches to identify novel sources of resistance against greenbugs. In this study, we used the recently developed sorghum nested association mapping (NAM) population parental lines to understand sources of sorghum resistance to greenbugs. Using choice and no-choice assays, we have identified SC265 and Segaolane as the resistant and susceptible lines, respectively, to greenbugs compared to the wild-type plants. The Electrical Penetration Graph (EPG) analysis revealed that the greenbugs spent significantly lesser time in the xylem and sieve element phases while feeding on the resistant NAM parental line, SC265, compared to the susceptible (Segaolane) and wild-type (RTx430) sorghum lines. In addition, the EPG results indicated that there is no significant difference in the time to first probe, time to reach first sieve element, pathway phase, and non-probing phase among the three sorghum plants, which suggests that the resistance factors present in the vascular tissues of the resistant line (SC265) potentially contribute to the resistance mechanisms against greenbugs. Overall, SC265 NAM parental line showed a combination of antixenotic and antibiotic-mediated resistance mechanisms against greenbugs, whereas the susceptible line Segaolane displayed the least resistance to greenbugs

    Deleterious mutations predicted in the sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) \u3ci\u3eMaturity\u3c/i\u3e (\u3ci\u3eMa\u3c/i\u3e) and \u3ci\u3eDwarf\u3c/i\u3e (\u3ci\u3eDw\u3c/i\u3e) genes from whole‑genome resequencing

    Get PDF
    In sorghum [Sorghum bicolor (L.) Moench] the Maturity (Ma1, Ma2, Ma3, Ma4, Ma5, Ma6) and Dwarf (Dw1, Dw2, Dw3, Dw4) loci, encode genes controlling flowering time and plant height, respectively, which are critical for designing sorghum ideotypes for a maturity timeframe and a harvest method. Publicly available whole-genome resequencing data from 860 sorghum accessions was analyzed in silico to identify genomic variants at 8 of these loci (Ma1, Ma2, Ma3, Ma5, Ma6, Dw1, Dw2, Dw3) to identify novel loss of function alleles and previously characterized ones in sorghum germplasm. From~ 33 million SNPs and~ 4.4 million InDels, 1445 gene variants were identified within these 8 genes then evaluated for predicted effect on the corresponding encoded proteins, which included newly identified mutations (4 nonsense, 15 frameshift, 28 missense). Likewise, most accessions analyzed contained predicted loss of function alleles (425 ma1, 22 ma2, 40 ma3, 74 ma5, 414 ma6, 289 dw1, 268 dw2 and 45 dw3) at multiple loci, but 146 and 463 accessions had no predicted ma or dw mutant alleles, respectively. The ma and dw alleles within these sorghum accessions represent a valuable source for manipulating flowering time and plant height to develop the full range of sorghum types: grain, sweet and forage/biomass
    • …
    corecore