1,367 research outputs found

    The effect of wavy leading edges on aerofoil-gust interaction noise

    No full text
    High-order accurate numerical simulations are performed to investigate the effects of wavy leading edges (WLEs) on aerofoil–gust interaction (AGI) noise. The present study is based on periodic velocity disturbances predominantly in streamwise and vertical directions that are mainly responsible for the surface pressure fluctuation of an aerofoil. In general, the present results show that WLEs lead to reduced AGI noise. It is found that the ratio of the wavy leading-edge peak-to-peak amplitude (LEA) to the longitudinal wavelength of the incident gust (?g) is the most important factor for the reduction of AGI noise. It is observed that there exists a tendency that the reduction of AGI noise increases with LEA/?g and the noise reduction is significant for LEA/?g?0.3. The present results also suggest that any two different cases with the same LEA/?g lead to a strong similarity in their profiles of noise reduction relative to the straight leading-edge case. The wavelength of wavy leading edges (LEW), however, shows minor influence on the reduction of AGI noise under the present gust profiles used. Nevertheless, the present results show that a meaningful improvement in noise reduction may be achieved when 1.0?LEW/?g?1.5. In addition, it is found that the beneficial effects of WLEs are maintained for various flow incidence angles and aerofoil thicknesses. Also, the WLEs remain effective for gust profiles containing multiple frequency components. It is discovered in this paper that WLEs result in incoherent response time to the incident gust across the span, which results in a decreased level of surface pressure fluctuations, hence a reduced level of AGI noise

    Numerical evidence for `multi-scalar stars'

    Get PDF
    We present a class of general relativistic soliton-like solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ``phase-shifted boson stars'' (parameterized by central density rho_0 and phase delta), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W.M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar soliton-like solutions are perhaps more generic than has been previously thought.Comment: Revtex. 4 pages with 4 figures. Submitted to Phys. Rev.

    CMB photons shedding light on dark matter

    Full text link
    The annihilation or decay of Dark Matter (DM) particles could affect the thermal history of the universe and leave an observable signature in Cosmic Microwave Background (CMB) anisotropies. We update constraints on the annihilation rate of DM particles in the smooth cosmological background, using WMAP7 and recent small-scale CMB data. With a systematic analysis based on the Press-Schechter formalism, we also show that DM annihilation in halos at small redshift may explain entirely the reionization patterns observed in the CMB, under reasonable assumptions concerning the concentration and formation redshift of halos. We find that a mixed reionization model based on DM annihilation in halos as well as star formation at a redshift z~6.5 could simultaneously account for CMB observations and satisfy constraints inferred from the Gunn-Peterson effect. However, these models tend to reheat the inter-galactic medium (IGM) well above observational bounds: by including a realistic prior on the IGM temperature at low redshift, we find stronger cosmological bounds on the annihilation cross-section than with the CMB alone.Comment: 35 pages, 14 figures; version accepted in JCAP after minor revision

    Chaos in a double driven dissipative nonlinear oscillator

    Get PDF
    We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in quantum state diffusion approach. Quantum dynamical manifestation of chaotic behavior, including the emergence of chaos, properties of strange attractors, and quantum entanglement are studied by numerical simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure

    A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship

    Get PDF
    Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship

    TCR signal strength controls thymic differentiation of iNKT cell subsets.

    Get PDF
    During development in the thymus, invariant natural killer T (iNKT) cells commit to one of three major functionally different subsets, iNKT1, iNKT2, and iNKT17. Here, we show that T cell antigen receptor (TCR) signal strength governs the development of iNKT cell subsets, with strong signaling promoting iNKT2 and iNKT17 development. Altering TCR diversity or signaling diminishes iNKT2 and iNKT17 cell subset development in a cell-intrinsic manner. Decreased TCR signaling affects the persistence of Egr2 expression and the upregulation of PLZF. By genome-wide comparison of chromatin accessibility, we identify a subset of iNKT2-specific regulatory elements containing NFAT and Egr binding motifs that is less accessible in iNKT2 cells that develop from reduced TCR signaling. These data suggest that variable TCR signaling modulates regulatory element activity at NFAT and Egr binding sites exerting a determinative influence on the dynamics of gene enhancer accessibility and the developmental fate of iNKT cells
    corecore