4,747 research outputs found

    AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    Get PDF
    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ∼420  nm∼420  nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber

    Surface materials of the Viking landing sites

    Get PDF
    Martian surface materials viewed by the two Viking landers (VL-1 and VL-2) range from fine-grained nearly cohesionless soils to rocks. Footpad 2 of VL-1, which landed at 2.30 m/s, penetrated 16.5 cm into very fine grained dunelike drift material; footpad 3 rests on a rocky soil which it penetrated ≈3.6 cm. Further penetration by footpad 2 may have been arrested by a hard substrate. Penetration by footpad 3 is less than would be expected for a typical lunar regolith. During landing, retroengine exhausts eroded the surface and propelled grains and rocks which produced craters on impact with the surface. Trenches excavated in drift material by the sampler have steep walls with up to 6 cm of relief. Incipient failure of the walls and failures at the end of the trenches are compatible with a cohesion near 10–10^2 N/m^2. Trenching in rocky soil excavated clods and possibly rocks. In two of five samples, commanded sampler extensions were not achieved, a situation indicating that buried rocks or local areas with large cohesions (≥10 kN/m^2) or both are present. Footpad 2 of VL-2, which landed at a velocity between 1.95 and 2.34 m/s, is partly on a rock, and footpad 3 appears to have struck one; penetration and leg strokes are small. Retroengine exhausts produced more erosion than occurred for VL-1 owing to increased thrust levels just before touchdown. Deformations of the soil by sampler extensions range from doming of the surface without visible fracturing to doming accompanied by fracturing and the production of angular clods. Although rocks larger than 3.0 cm are abundant at VL-1 and VL-2, repeated attempts to collect rocks 0.2–1.2 cm across imbedded in soil indicate that rocks in this size range are scarce. There is no evidence that the surface sampler of VL-2, while it was pushing and nudging rocks ≈25 cm across, spalled, chipped, or fractured the rocks. Preliminary analyses of surface sampler motor currents (≈25 N force resolution) during normal sampling are consistent with cohesionless frictional soils (ϕ ≈ 36°) or weakly cohesive frictionless soils (C < 2 kN/m^2). The soil of Mars has both cohesion and friction

    Development of a first generation perfusion process and medium for continuous processing based on existing fed-batch platform media

    Get PDF
    Process intensification leveraging perfusion offers tremendous potential for yield improvement over fed-batch processes for the production of monoclonal antibodies. In the context of continuous processing, the goal is to achieve highly intensified perfusion processes that allow substantial footprint reduction and enable flexible adaptation in new facilities. However developing a perfusion process and medium without prior technology requires leveraging the existing fed-batch platform knowledge. Evolving a medium for perfusion relies on designing suitable mixtures of basal and feed media that serve as adequate starting points for development. Focus on optimization of the medium to decrease byproduct waste, reduce unnecessary cell growth and enhance specific productivity is critical. Doing so would allow a more robust and controlled process, and allow steady-state to be more attainable which will aid in maintaining consistent product quality for continuous processing. Moreover, reducing medium utilization hence the ability to operate under lower cell specific perfusion rate was important in order to have a more economical and nimble process. In order to overcome the conventional perfusion medium bottlenecks of equipment capacity, liquid handling, transfer and storage, a different strategy to managing large bulk volume had to be undertaken in order to make fit for an existing small pilot plant. The approach to establishing a first generation perfusion process starting from a fed-batch platform will be shared. Examples demonstrating continuous perfusion and volumetric productivity of \u3e 1 g/L-day under low CSPR will be discussed

    Antibody-Mediated Rejection in Heart Transplantation: Case Presentation with a Review of Current International Guidelines

    Get PDF
    Antibody-mediated rejection (AMR) (humoral rejection) of cardiac allografts remains difficult to diagnose and treat. Interest in AMR of cardiac allografts has increased over the last decade as it has become apparent that untreated humoral rejection threatens graft and patient survival. An international and multidisciplinary consensus group has formulated guidelines for the diagnosis and treatment of AMR and established that identification of circulating or donor-specific antibodies is not required and that asymptomatic AMR, that is, biopsy-proven AMR without cardiac dysfunction is a real entity with worsened prognosis. Strict criteria for the diagnosis of cardiac AMR have not been firmly established, although the diagnosis relies heavily on tissue pathological findings. Therapy remains largely empirical. We review an unfortunate experience with one of our patients and summarize recommended criteria for the diagnosis of AMR and potential treatment schemes with a focus on current limitations and the need for future research and innovation

    Commentary: Essential Programs and Services Model

    Get PDF
    To further discussion about the Essential Programs and Services (EPS) model for funding public education in Maine, Maine Policy Review asked eight superintendents—representing districts across the state— to provide their views. We also asked each to discuss the needs of his district and whether additional state policy options were necessary to tackle the most pressing issues. The districts represented by these superintendents are a cross section of urban and rural high-receivers and low-receivers. Still, several commonalities emerge: the need for a state commitment that does not wax and wane with the business cycle; the urgency of professional development for new and experienced teachers; and, the importance of linking student outcomes with student assessment measures and student funding. In short, EPS is not seen as a solution to the state’s ongoing debate over public-education funding, but is recognized as a necessary first step

    Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain

    Get PDF
    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood–brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.National Institutes of Health (U.S.) (Grant R01 EB006365-06)Brain Science Foundation (Private Grant 106708
    corecore