15,370 research outputs found

    Derailing individualized ovarian stimulation

    Get PDF
    No abstract available

    From present to future : beyond becoming a nation of readers

    Get PDF
    Includes bibliographical references (p. 13-19)The work upon which this publication was based was supported in part by the Office of Educational Research and Improvement under Cooperative Agreement No. OEG 0087-C100

    Systematics of black hole binary inspiral kicks and the slowness approximation

    Get PDF
    During the inspiral and merger of black holes, the interaction of gravitational wave multipoles carries linear momentum away, thereby providing an astrophysically important recoil, or "kick" to the system and to the final black hole remnant. It has been found that linear momentum during the last stage (quasinormal ringing) of the collapse tends to provide an "antikick" that in some cases cancels almost all the kick from the earlier (quasicircular inspiral) emission. We show here that this cancellation is not due to peculiarities of gravitational waves, black holes, or interacting multipoles, but simply to the fact that the rotating flux of momentum changes its intensity slowly. We show furthermore that an understanding of the systematics of the emission allows good estimates of the net kick for numerical simulations started at fairly late times, and is useful for understanding qualitatively what kinds of systems provide large and small net kicks.Comment: 15 pages, 6 figures, 2 table

    Black hole binary inspiral and trajectory dominance

    Full text link
    Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear momentum. This results in an astrophysically important recoil to the final merged black hole, a ``kick'' that can eject it from the nucleus of a galaxy. In a previous paper we showed that the puzzling partial cancellation of an early kick by a late antikick, and the dependence of the cancellation on black hole spin, can be understood from the phenomenology of the linear momentum waveforms. Here we connect that phenomenology to its underlying cause, the spin-dependence of the inspiral trajectories. This insight suggests that the details of plunge can be understood more broadly with a focus on inspiral trajectories.Comment: 15 pages, 12 figure

    Short and long distance translocations: Movement and survival in eastern box turtles (_Terrapene carolina carolina_)

    Get PDF
    *Background/Question/Methods*

Human development represents a serious threat to wildlife populations through continued habitat loss and incidental mortality from construction activities. Resource managers responsible for protecting species with legal status or high public profile are faced with difficult decisions on how to best manage populations located in construction zones. One approach to mitigate mortalities is to relocate individuals. The effectiveness of translocation for reptiles and amphibians has been questioned, with studies often reporting higher mortality and increased movements of translocated individuals. Translocations of reptiles and amphibians have primarily involved moving animals long distances, well beyond an individual’s home range. For reptiles this means finding new nesting, foraging, and overwintering sites, which may be problematic. Moving individuals only short distances, within their home range, may reduce those problems. As part of the mitigation plan for a highway construction project in central Maryland, groups of eastern box turtles (Terrapene carolina carolina) were translocated both short distances (<0.5km), and long distances (~5km). To investigate differences in survival and movement patterns among long distance translocation, short distance translocation, and non-translocation groups, I tracked 94 turtles (31 long distance translocation, 29 short distance translocation, and 34 non-translocation) using radio telemetry. 

*Results/Conclusions*

Eleven animals died during the first activity season after translocation (April through November 2008). The mortalities included two long distance translocation, six short distance translocation, and three non-translocation animals. The causes of mortality included road kill, construction activity, and unknown (1, 4, and 6 mortalities respectively). All construction related mortalities were a result inadequate exclusion fencing to keep turtles from trespassing back onto the construction site. All mortalities due to construction were either non-translocation or short distance translocation animals. Eleven other individuals were located at least once within the construction zone, suggesting that without our intervention mortality rates would have been much higher. Preliminary results for movement show that turtles in the non-translocation group had the lowest average movements while long distance translocation animals had the greatest average movements. Long distance translocation turtles also chose overwintering sites farther away from their initial overwintering sites than either short distance translocation or non-translocation turtles (average distance from original site of 261.8m, 155.6m, and 124.3m respectively). This suggests that movement patterns of short distance translocation turtles are more like native turtles.
&#xa

    Real, complex and quaternionic toric spaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1993.Includes bibliographical references (p. 61-62).by Richard A. Scott.Ph.D
    • …
    corecore