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Abstract

In this thesis we give topological generalizations of complex toric varieties to
the real numbers and quaternions. The resulting spaces, called, respectively, real
toric spaces and quaternionic toric spaces, are characterized by a convex polytope P
together with some algebraic data in the form of a characteristic function A on the
faces of P . In all cases we discuss conditions for nonsingularity and compute the
cohomology ring for these nonsingular examples in terms of P and A. The real part of
a complex toric variety is the motivating example in the real case, and for these real
varieties we give conditions on P for the existence of topological embeddings into real
projective space. These conditions are shown to be weaker than those for projective
embeddings of complex toric varieties.

In contrast to the real and complex cases, quaternionic toric spaces can be topolog-
ically nonsingular but fail to be smooth. Examples which arise easily are the Thom
spaces of Milnor's exotic 7-spheres (given as 3-sphere bundles over the 4-sphere).
Focusing on dimension 2 (8 real dimensions), we study a certain class of smooth
examples. These 8-manifolds, being 3-connected, are classified by their intersection
forms and first Pontrjagin classes. Formulas are given for these invariants, as well as
other characteristic numbers, in terms of the characteristic function A.
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0 Introduction

The theory of complex toric varieties was introduced formally in the early 1970's by
Kempf, Knudsen, Mumford and Saint-Donat in [14]. The standard definition of a
toric variety involves patching together various affine varieties according to the data
of a rational cone complex E (or fan) in Rd. It follows from this construction that a
toric variety contains the algebraic torus (C*)d as a dense open subset and the natural
action of the torus on itself extends to an action on the entire variety. Conversely,
any variety with such a torus action (and dense orbit) is a toric variety (see, eg.,[24]).
This connection between the rational/combinatorial structure of cone complexes and
torus actions on algebraic varieties is, historically, the motivation for the study of
toric varieties, and leads to elegant descriptions of such objects as the cohomology
ring and characteristic classes.

A classical problem in algebraic geometry is to determine when an algebraic vari-
ety is projective; in the case of toric varieties, the answer depends on the existence of
certain "convex" functions on the cone complex. Such a function defines a rational
polytope P (which is combinatorially dual to E), connecting the theory of toric va-
rieties to that of convex polytopes. The use of geometric methods for toric varieties
has led to progress in several areas relating to polytopes, two of the more notable ap-
plications being the counting of lattice points and the relations between face numbers
(and flag numbers).

The entire subject was approached from a different angle by various people in-
cluding Atiyah, Guillemin, Sternberg [1, 10] who studied (compact) torus actions on
symplectic manifolds. Here the differential structure is enough to provide a descrip-
tion of the quotient space as the image of the moment map. In the event that a
toric variety is nonsingular and projective, hence a symplectic manifold with a torus
action, the moment map image coincides with the convex polytope mentioned above.
A converse by Delzant [6] states that every symplectic 2d-manifold with an effective
d-torus action (Hamiltonian) arises as such a variety.

More recently, Davis and Januszkiewicz [5] have generalized further to the case
of a torus acting on an arbitrary manifold. They start with a manifold with a torus
action, assuming only that the orbit space is a simple convex polytope and that the
action is locally the standard representation of the torus on Cn.They show that such
objects are, in fact, more general than toric varieties and then proceed to compute
their cohomology rings and characteristic classes.

In this thesis (starting with Section 2) we will make various additional general-
izations arising from the description of a toric variety as a topological quotient of a
product of the torus with a convex polytope. This description, due to MacPherson,
starts with the space P x (S')d, where P is a d-dimensional convex polytope, and
identifies points of the torus over the boundary of P. The first generalization (Sec-



tion 4) is to replace the torus with its real counterpart (SO)d which we can think of
additively as the group (Z/(2))d. We give necessary and sufficient conditions for the
resulting real toric space to be nonsingular (Theorem 4.3.1), and in the event that
it is, we compute the cohomology ring (Theorem 4.4.1). This computation of the
cohomology ring is also given in [5]; we include it here both for the sake of complete-
ness and because the author computed it without knowledge of this prior work. The
real part of a toric variety (ie, a real toric variety) is perhaps the most interesting
example of such a space, and Januszkiewicz has brought to my attention a paper [13]
by Jurkiewicz where the cohomology ring in this case is also computed.

Another generalization (Section 5) is to replace the torus with the group (S3)d
and to specify appropriate identifications over the boundary of the polytope. Despite
the fact that these spaces are not toric, we refer to them as quaternionic toric spaces
to emphasize their heritage. Again, we give conditions for such a space to be nonsin-
gular (Propositions 5.4.1 and 5.4.2) and, in this case, compute its cohomology ring
(Theorem 5.5.1).

In all three cases (real, complex, and quaternionic), the collapsing of the space

(Sk)d (k = 0, 1,3) only occurs over the boundary of polytope, hence the corresponding
space has a natural smooth structure over the interior of P. In contrast to the real and
complex cases, a quaternionic toric space can be topologically nonsingular, yet have
this smooth structure fail to extend over the entire polytope. In Section 6.1, we give
the simplest 2-dimensional (8 real dimensional) examples of this phenomenon, these
spaces being the Thom spaces of Milnor's exotic 7-spheres (thought of as 3-sphere
bundles over the 4-sphere). The obstruction to extending the smooth structure is a
certain element of the group of exotic 7-spheres, a complete invariant for which is
given by Eells and Kuiper in [7] (see Proposition 6.1.1).

For the remainder of Section 6, we concentrate on a natural class of 2-dimensional
examples for which the differential structure does extend. These smooth 8-manifolds
are necessarily 3-connected hence, as in [31], are determined by their intersection
form and first Pontrjagin class. The relationship between these two invariants is
given by certain equations involving the Pontrjagin numbers, the A-genus, and the
rank and signature of the intersection form. For our class of smooth examples, the
characteristic function determines a sequence of pairs of integers (Lemma 6.2.1); in
Section 6.3, we give explicit formulas for all of the above invariants and formulate the
relations among them as restrictions on this sequence of integer pairs.

The motivating examples of real toric spaces are real toric varieties. Section 1
discusses these real varieties (including the singular ones), setting up notation and
definitions which will be usefull in later sections. As a culmination of this section,
we prove a result for real toric varieties which is related to the complex projective
embedding criterion mentioned above. In particular, an integral convex polytope P
gives a natural map from a (uniquely determined) toric variety X to projective space.
This map is an embedding if the polytope is large enough (ie., if the pullback of the



universal line bundle has enough global sections). The image of the restriction of this
map to the real toric variety XR is a real projective space, and Theorem 1.4.1 gives
conditions on the size of P for this restricted map to be a topological embedding. In
Section 1.5 we show that these conditions are weaker than those for complex projective
embeddings.

0.1 Notation

R, C, H
Z, Z/(n), Q
RP", P", HP"
N
M
NR, MR

P,ip

77
X(E), XR(E)
Tk
Ak

TRAO, TcAX, THA 3

(E)
(EIR), (E)//(R)
F(EIR)

the real numbers,,complex numbers, and quaternions (resp.)
the integers, integers modulo n, and rational numbers (resp.)
the real, complex and quaternionic projective n-spaces
a free Z-module of rank d
the dual Z-module Hom(N, Z)
the real vector spaces N Oz R, M ®z R
the natural bilinear pairing MR x NR --+ R
a rational cone complex (fan) in NR
a d-dimensional polytope in MR, and its poset of faces
the number of facets of P
the complex and real (resp.) toric varieties associated to E
the unit k-sphere in R (k = 0), C (k = 1), and H (k = 3)
real (k = 0), complex (k = 1), and quaternionic (k = 3)

characteristic functions
real, complex, and quaternionic toric spaces for the given

characteristic function
the natural projection from TRAo, TcA 1, or THA 3 to the

polytope P
free group on the set E
the group given by generators E and relations R
the function space Hom,p((EIR), F) where F is a topological

group (usually S3 )
In addition, we mention the following conventions. A cone will be denoted by a

lower case bold letter as in c, with dual cone 6i. The smallest R-subspace (say in Na)
spanned by c will be denoted by Rc and the induced sublattice N n Rc by Zc. The
faces of a polytope (in MR) will be denoted by lower case Greek letters, usually o or
r. Ro will denote the affine R-span of a, translated to the origin.





1 Real Projective Embeddings

A toric variety X(E) is uniquely determined by a complex E of rational cones in
Rd. It will have a projective embedding X(E) -~ P" if and only if E has a dual cell
complex with the same face lattice as an integral convex polytope P (cf. Appendix
[251). Having chosen such a P, there is a natural map ep from X(E) to a certain
projective space, and in the event that P is large enough, this map is an embedding.
In particular, for some large k, ekP is an embedding. Restricting the natural map ep
to the real part XR(E) of a complex toric variety gives a map from XR(E) to a real
projective space, and again, if P is large enough, this map will be an embedding. The
main result of this section is to show that P does not have to be as large in the real
case to ensure a topological embedding.

In Sections 1.1 and 1.2 we present the necessary definitions for complex toric va-
rieties. In Section 1.3, we give the explicit conditions on the size of P to ensure a
complex projective embedding. In Section 1.4 we state and prove the main result: con-
ditions for real embeddings. And finally, in Section 1.5 we show that these conditions
are weaker than those for complex projective embeddings.

1.1 Cones and Affine Toric Varieties

Let N be a free Z-module of rank d and let M be the dual module Homz(N, Z). Denote
by NR and MR (respectively, Nq and Mq) the vector spaces N ®z R and M Oz R
(resp., N 0 Q and M 0 Q). Geometrically, we just think of M and N as standard
lattices in their respective Euclidean spaces. The natural pairing (,) : MR x Na -+ R
clearly restricts to M x N and to Mq x NQ.

A rational cone c in NR is the convex hull of a finite set of rays passing through
nonzero points of N. For an arbitrary set S C N, we will often use the notation R>oS
for the convex hull of the rays passing through points of S. For a rational cone c in
NR there is, in fact, a unique minimal set {nl, n2,... , n,} of primitive lattice points
in N, called the extreme set for c and written ext c, such that

c = R>onl + R>on 2 + - - + R>on, = R>oext c.

Dually, c can be written as the intersection of a finite number of rational half spaces:

r

c = fl{q E NRI(mi,q) > 0}
i=1

where the mi are unique, primitive lattice points of M. The smallest R-subspace of NA
containing c will be denoted by Rc, and the dimension of the cone c is the dimension
of the vector space Rc. If the cardinality of ext c is equal to the dimension of c, then
c is called simplicial. Any hyperplane which does not intersect the ifiterior of c is



called a supporting hyperplane, and a face b of c, written b -< c, is the intersection of
c with a supporting hyperplane. A cone c is strictly convex if it contains no nonzero
subspace of NR and is maximal if Rc = NR. A maximal, simplicial cone for which
the d spanning rays are generated by a basis n1 , n2 ,..., nd for N will be called basic.
Throughout this work all cones will be assumed to be rational.

If c is a cone in NR, we denote by c- the vector subspace

{p E MRI(p, q) = 0 for all q E c}

of MR. And we define the dual cone i to be the rational cone in MR defined by

i = {p E MRI(p, q) > 0 for all q E c}.

Notice that this duality has the following properties ([25]):

i. (b)'"= c.

ii. If b is a face of c, i is contained b.

iii. If c is strictly convex, C is maximal.

iv. c is simplicial and maximal if and only if 6 is simplicial and maximal.

v. c is strictly convex and maximal if and only if Zi is strictly convex and
maximal.

vi. c is basic if and only if 6 is basic.

Property (ii) has a much stronger formulation, the proof of which can also be found
in [25]. Namely, there is an inclusion reversing bijection between k-faces of c and
codimension k faces of i given by

b - bl n E.

If c is a strictly convex cone in NR, then i n M has the structure of an additive
semigroup with unit. C[ f n M] denotes the semigroup C-algebra generated by i n M,
and the affine toric variety associated to c is the variety

U(c) = Spec C[ : n Mj = Horn s.gp.(f n M, C)

where Hom denotes unitary semigroup homomorphisms (C being a multiplicative
semigroup with unit 1). We will concentrate primarily on the second of these pre-
sentations for U(c), regarding a point of U(c) as a semigroup homomorphism from
e n M to C.



REMARK. The reader is encouraged to explore the correspondence between the
two definitions of U(c). Choosing, say n, generators for the semigroup 'b n M and
finding all additive relations among these generators gives a presentation of the al-
gebra C[6 n M] as a quotient of the polynomial ring with n indeterminates by some
ideal I. We can then think of U(c) as the zeros in Cn of a set of polynomials gener-
ating I. On the other hand, each such point in Cn determines a unique element of
Horn s.gp.(6 n M, C) by sending the ith generator of nM to the ith coordinate of
the point. As a special case, notice that U(c) is isomorphic to Cd if and only if c is
basic ([25, page 15]).

1.2 Cone Complexes and Toric Varieties

The following fact motivates the construction of a general toric variety: if b is a
face of c, then the affine variety U(b) is a dense open subset of U(c). Therefore, if
two maximal cones in NR share a face, there is a natural way to glue the associated
affine varieties together along an open subset of each variety. To obtain this natural
inclusion, notice that if b -< c, i n M is a subsemigroup of b n M, and that this
induces a map

U(b) = Hom s.gp.(b n M, C) --+ U(c) = Hom s.gp.(i6 n M, C).

x E U(c) is in the image of this map if and only if x(p) 0 0 for all p E (b' n 6) n M.
Because any p E b n M can be written p = p1 - P2 where pi E zi n M and P2 E
(b' n 6) n M, any x E U(c) in the image of this map is the image of the unique
semigroup homomorphism x' E U(b) defined by

x'(p) = x(pl)/x(p2).

It follows that U(b) is a dense open subset of U(c).
Notice, in particular, that the variety U(o) corresponding to the zero cone is the

algebraic torus
Hom s.gp.(M, C) = N 0z C*' (C') .

This torus sits inside every affine toric variety as a Zarisky open subset. (In fact, the
subgroup Td = Hom s.gp.(M, S1) is the compact torus of Section 1.)

A rational cone complex E in NR is a collection of rational cones satisfying the
two conditions:

i. If c E E and b -< c, then b E E.

ii. If cl E E and c 2 E E, then cx n c 2 E E.



Because of the combinatorial structure of E and the natural inclusions mentioned
above, all of the varieties {U(c)Je E E} glue together to form the complex toric
variety X(E). In the category of spaces, this construction is simply the topological
union or pushout of the directed system {U(c)jc E E}. For important properties
of X(E) (for example, that it is a Hausdorff complex analytic space), the reader is
refered to [25, Theorem 1.4].

1.3 Complex Projective Varieties

Let P be an integral convex polytope in MR (ie, P is the convex hull of a finite subset
of M). Assume that P is d-dimensional. We can always translate P so that 0 is in
the interior and the vertices of P are in Mq. Hence, we can write this translate of P
as the intersection of affine halfspaces (one for each facet):

P = n{p E MRI(ni,p) < 1}
i=1

where each ni E NQ is uniquely determined by the chosen translation of P. We now
let E be the collection of cones in NR of the form

c = R>oS

where S C {nl,...,n,j} is such that

n {P E MRI(n,p) = 11
nES

is an affine subspace of MR containing a face of P. Details of the following fact can
be found in [25].

Proposition 1.3.1 E is a complete rational cone complex and does not depend on
the choice of 0 (ie, the translation).

E is called the cone complex dual to P and the variety X(E) is called the toric
variety associated to P.

If {mo, m 2,..., m,•} = PnM is the set of lattice points in P, then there is a natural
algebraic map e from the toric variety associated to P to the projective space Pr. A
maximal cone c E E corresponds to a vertex, say mo. If P - mo is the translation of
P which moves mo to the origin, then the R>o-span of P - mo is the dual cone b. In
particular, m - mo E 6 M for all m E R. e is then defined on U(c) as follows:

x E U(c) - [1,z(mi - mo), X(m2 - mo),... ,(m, - mo)] E P.



e is defined similarly on U(c) for each maximal cone c E E, and one can check that
these maps agree on the overlaps (see eg, [25]).

We are now ready to state the main theorem of complex projective embeddings.
For the proof, the reader is refered to [25].

Theorem 1.3.1 The map e : X(E) -+ pr is an embedding if and only if for each
vertex mo E P the set {m - mo E Mim E P n M} generates the semigroup if n M
where c is the cone dual to mo.

1.4 Real Projective Embeddings

By a real toric variety, we mean the real part of a complex toric variety. To be precise,
the real part of an affine toric variety U(c) is the subspace

Uo(c) = Hom s.gp.(i: n M, R) C U(c)

and, as in the complex case, for a fixed cone complex E, the Uo(c), as c runs through
E, glue together along the natural inclusions. The resulting space is again a pushout
in the category of spaces and is called the real toric variety XR(E).

If P is an integral convex polytope in MR and E is the dual cone complex defined
in Section 1.3, then eo will denote the restriction of the map e : X(E) - pr to the
subspace XR(E). Clearly, co has image in the real projective space RPd C pd. In
addition, for each 1-face a of P, we denote by Ra the unique 1 dimensional subspace
of MR which is parallel to a (ie, the R-linear extension of a - p for some p E a). We
let Za, then, be the rank 1, unimodular sublattice Ra n M of M. We now state the
main result of this section.

Theorem 1.4.1 The map co : XR(E) - RPd is a topological embedding if and only
if for every pair (v, a), where a is a face of P and v is a vertex of a, the image in
M 0 Z/(2) of the set {m E Mum + v E a n M} generates Za 0 Z/(2).

Just as we defined the sublattice Za for a face a of P, for any convex I dimensional
cone c E M, we let Zc denote the rank I unimodular sublattice Rcn M. In particular,
Zc = M for every maximal cone c. For any finite subset S of M, we denote by Z>oS
the subsemigroup of M generated by S (including 0), and for

x E Hom s.gp.(Z>oS, R)

we define the support of x in S, written suppx, to be the set {m E Six(m) / 0}.
Theorem 1.4.1 is a straightforward consequence of the following affine version.



Theorem 1.4.2 Let c be a maximal, strictly convex cone in NR with dual cone (as
in Section 1.1)

Z: = R>oml + R>om 2 + ... + R>om, = R>oext 6.

Let S be a subset of a M which contains ext 6. Then the natural map

€: Uo(c) = Hom s.gp.(6 n M, R) -+ Hom s.gp.(Z>oS, R)

is a homeomorphism if and only if for every face b -4 i, the image of S n b generates
Zb 0 Z/(2) as a Z/(2)-vector space.

Lemma 1.4.1 Let c be a strictly convex, 1-dimensional cone in MR, let p be a point
in relintc n M, and let mo be an element of ext c. Then there is a set r C ext c
containing mo and a map a : F --+ Q>o such that a(mo) > 0 and

p = y a(m) -m.
mEF

Proof . The proof is by induction on 1 = dim c. If I = 0, p is a positive integral
multiple of mo; it suffices, then, to let r = {mo} and to let a(mo) be this integral
multiple. More generally, the ray starting at mo and passing through p will intersect
relint b for a unique proper face b of c. Let p' be this intersection point and notice
that there are positive rational constants a and 3 such that

p = am o + pp'.

Next choose m' E ext b. By induction, there is a set r' C ext b C ext c containing
m' and a map a': F' r Q>o such that a'(m') > 0 and

p' = a'(m) - m.
mEr,

Finally, let r = F' U {mo} and define a(mo) = a and a(m) = P a'(m) for m E F'. I

Lemma 1.4.2 Let 6 be a maximal, strictly convex cone in MR. If S is any finite
subset of a- nM containing ext 6 and x E Hom s.gp.(Z>oS, R), then supp x = S n b
for some face b of E.

Proof . We first show that supp x is of the form

U Snb
bE



for some collection 5 of faces of c. Then we show that UZ is itself a face of &.

Each p E S is in the relative interior of exactly one face of i. We will show that
if p E supp x and p E relint b then b n S is contained in supp x. We then take 9
to be the collection of all faces containing a point p E supp x. Suppose, then, that
p E relint b for some i-face b and p E supp x. For each mo E ext b, we can write

p = a(m) .m
mEr

with a and P defined as is Lemma 1.4.1. But x(p) 0 0 implies, then, that x(mo) # 0
since all coefficients a(m) are non-negative and a(mo) is strictly positive. It follows
that ext b is contained in the support of x, and since any other point in b n S is a
non-negative rational combination of these extreme points, it must also be an element
of supp x

Next we will show that if bl n S and b2 n S are both in supp x, then so is b3 n S
where b3 is the smallest face of b containing bl and b2. If

Pi = E m and p 2 = m (1)
meext b, meext b2

then Pi E relint bl, P2 E relint b2, and Pi + p2 E relint b3.For any mo E ext b3, we can
find (by Lemma 1.4.1) P C ext b3 and a :r -+ Qo with a(mo) > 0 such that

Pi + P2 = Z a(m) -m.
mEr

Substituting the expressions (1) for pi and p2, we have

E m+ E m= Ea(m) m. (2)
meextb, meext b2  mEr

Multiplying both sides by a suitable positive integer D to clear denominators (so that
all terms of equation (2) are in the semigroup Z>0oS), and applying x to the result
gives the equation

IJ x( j (m)D = X(mo)a(mo)D I x(m)a(m)D.

mEext b, meext b2  mEr\(mo}

Since the left hand side of this equation is nonzero, x(mo) is nonzero. Repeating the
argument for all extreme points of b3 gives ext b3 C supp x, and using the argument
of the previous paragraph, we have b3 n S C supp x. Finally, since B is finite, we can
continue this process until we find a maximal face b E B with

b = U•.



Proof of Theorem 1.4.2. Assume first that for every face b -< i~, the image of Sn b
generates Zb 0 Z/(2) as a Z/(2)-vector space. We need only to produce an inverse for
0; 0, being polynomial is certainly continuous, and the continuity of 0-' will follow
from its explicit formulation. Let x E Hom s.gp.(Z>oS, R) and find (by Lemma 1.4.2)
an i-face b of i such that supp xz = S n b. We need to find an element y E Uo(c)
such that 0(y) = x. If m V b n M define y(m) = 0. Otherwise, let mi, m 2, ... , mt be
a set of elements of S n b whose images mi, m2,..., m, form a basis for Zb 0 Z/(2).
Then, in fact, the mi's form a basis for Zb 0 Q, because for any linear dependence
E aimi = 0 with ai E Q, we can clear the denominators and reduce mod 2 to get a
nontrivial dependence in Zb 0 Z/(2). For any primitive element m E b n M, then, we
can write

bm = aim, + a2M2 + -t- -+ alm (3)

for b, al, a2 ,..., a* E Z relatively prime. We can assume further that b is odd: because
m is primitive, m $ 0, and reducing equation (3) mod2 would produce a non-trivial
dependence among the mi's. Finally, mi E supp x means x(mi) 0 0 for i = 1,2,..., 1,
so the expression

y(m) = (X(mi,)a)llb
i=1

is unique and well-defined over R. If m is not primitive, we can find a primitive m'
with m = am' (a E Z>0o), then define y(m) = y(m')a. It is clear from the construction
that y is a semigroup homomorphism from i n M to R and that 0(y) = x.

Conversely, assume b is an i-face of & and the mod 2 reduction of S n b does
not generate Zb 0 Z/(2). Our conditions on S guarantee that there are 1 elements
mi, m 2,..., mi E Snb which form a Q-basis for Zb0Q. Choose a primitive mo E bnM
such that mo E Zb 0 Z/(2) cannot be expressed as a Z/(2)-combination of elements
in Sn b. Because we can write mo as a rational combination of m 1 , m 2, ... ,i, some
multiple bmo is an integral combination

bmo = aim 1 + a2m 2 + ... + am

But b must be even since otherwise the mod 2 reduction of this equation would
contradict our choice of mo.

We can now show that q is at least two-to-one. Consider the semigroup homo-
morphism x: Z>oS -+ R defined by

1 if mEb nZ>oS
0 otherwise

Now define y+,y- E Uo(c) by y*(m) = x(m) for m E Z>oS, y+(mo) = ±1, and
choose any consistent extensions (possibly not unique) to the rest of 6 n M. Then
O(Y±)= X. I



Proof of Theorem 1.4.1. We first prove the "if" direction. Let c be a maximal
cone of E and let ec be the restriction of fo to Uo(c). As we said above, i is the
R>o-span of the translated polytope P - v where v is the vertex of P dual to the cone
c. Let S be the set (P - v) n M. For each face b of C, the set b n S is precisely the
set {m E Mim + v E a n M} where a is the face of P corresponding to b. Moreover,
the map ec factors through the natural map 0 of Theorem 1.4.2, giving the following
commutative diagram:

Uo(c) .c RP'

Hom s.gp.(Z>oS, R)

Since Za = Zb, the hypotheses of our theorem guarantee that b n S generates the
Z/(2) vector space Zb 0 Z/(2); hence, by Theorem 1.4.2, the map € is a homeomor-
phism. But it is clear that the natural map

Hom s.gp.(Z>oS, R) -+ RP'

is injective, because each element of S corresponds to a distinct projective coordinate.
It follows that ec is injective (being a polynomial map, it is obviously continuous).

It remains to show that if x, and X2 are two points of XR(E) with xz E Uo(c;)
for maximal cones cl and c2 of E such that Eo(x 1 ) = Eo(ZX), then xz = x2. We will
show that if x2 has the same image as xi, then xi E Im {Uo(c 1 n C2) Uo(C1)}; in
other words, x1 E Uo(cl) Uo(c 2). But then xz and x2 are both in Uo(c 2 ) and by the
previous paragraph must coincide.

Let b be the common face cl f c2 and recall from the beginning of Section 1.2
that x1 is in the image of the inclusion

Uo(b) -- Uo(c1)

if and only if the support of xz (in ýi n M) is precisely the set (bV n iE) n M. Let
vl and v2 be the vertices of P dual to the cones cl and c2. Then z(v 2 - vl) 5 0,
since xI(v 2 - v1) and x2 (v2 - v2) = 1 are the same projective coordinate for the point
co(xl) = Eo(x 2) E RPr. Since v2 - vi E relint b' L in, we can invoke Lemma 1.4.2 (or
its proof, rather) to show that supp xz = (b' n El) n M as desired.

For the "only if" direction, assume we can find (v, a) such that {mlm+v E anoM}
does not generate Za, 0 Z/(2). Let c be the maximal cone dual to v and let b be
the face of i corresponding to the face a. With S = {mlm + v E P n M}, we have



S n b = {mnm + v E oa M}, and by Theorem 1.4.2, the restriction of co to Uo(c) is
at least two-to-one. Hence Eo is not injective. I

1.5 Real Embeddings Are More Often

In this section we show that the conditions imposed on P in Theorem 1.4.1 are strictly
weaker than those of Theorem 1.3.1. Obviously, if e is a topological embedding, its
restriction, Co, to XR(E) will also be an embedding, and one can easily check that
the conditions in the first theorem on P imply the conditions in the second theorem.
Our goal, then, is to find a P (with dual cone complex E) such that the natural map
co : XR(E) -+ Rp r is an embedding while f: X(E) _ Pr is not.

Consider the rank-3 lattice L in R3 whose elements are all integral lattice points
(p, q, r) with p - q -r mod 3. A basis for this lattice consists of the points
{(3, 0, 0), (0, 3, 0), (1, 1, 1)}. The convex hull of the four points po = (3 , 3, 0), p =
(3 , 0, 0), p2 = (0,3,0), and p3 = (3, 3, 3) is a tetrahedron containing no other lattice
points of L. Clearly, {pl - po, P2 - Po,P3 - po} fails to generate L over Z, since the
third coordinate is always a multiple of 3. On the other hand, for every i and every
subset I of {0, 1,2, 3} containing i, the set {pj -pilj E I} is independent in L®Z/(2).
Choosing a linear isomorphism a : R3 --_ MR which carries L to the standard lattice
M, and taking the convex hull of the images a(pi) for i = 0, 1, 2,3 then gives the
desired polytope P in MR.



2 Stratified Toric Spaces

In Sections 3, 4, and 5, we present generalizations of toric varieties as abstract strati-
fied spaces in the sense of Thornm and Mather [18]. As mentioned in the introduction,
the underlying spaces of these three generalizations are topological quotients of P x Td ,

where P is a d-dimensional convex polytope and Tk is the k-sphere for k = 0, 1, and
3. The resulting stratified objects will be called real, complex, or quaternionic toric
spaces for k = 0, 1, or 3, respectively.

As topological spaces, these three classes have several similarities. For example,
they all have a map to a convex polytope (mentioned above), they all have a perfect
cell decomposition, and they all have the same cohomology ring (when appropriately
graded and reduced mod 2 in the real case). The additional structure of a stratified
space, however, reveals some significant differences. Most notably, in the quaternionic
case, some of the spaces are topologically nonsingular, but admit no differential struc-
ture.

2.1 Abstract Stratified Spaces

The primary ingredients of a stratified space X are the following:

i. A collection S of disjoint sets whose union is all of X. S E S is called a
stratum of X and is assumed to have a fixed smooth structure.

ii. For each stratum S, an open subset Tub (S) of X containing S (ie, a
tubular neighborhood).

iii. For each S, a tubular distance function ps : Tub (S) -- [0, oo) and a
projection 7rs : Tub (S) -- S.

The additional structure provided by Tub (S), ps, and 7rs is often called the control
data for X. This data is subject to various compatibility and smoothness conditions
listed in [18]. The dimension of a stratum is its dimension as a manifold; the dimension
d of X is the maximum dimension of all strata.

Following [9] (with different notation), we define Tub,(S) to be the level set {p E
Tub (S)lps(p) = e} and Tub < (S) to be the neighborhood {p E Tub (S)Ips(p) < E}.
For e suitably small, irsITub ,(S) is a fiber bundle with fiber L,(S). More generally, if
R is in the closure of S, then 7rR,s = 7rRiTub (R) n S is a fiber bundle ([18, Corollary
10.6]) and we denote the fiber by LS(R). It is well known that for small 6 and e,
LS(R) is isotopic to LS(R). With this in mind, for each R, we fix e and a point p E R,
and define the link of R in S, written LS(R), to be the fiber 7r-'s(p). For simplicity
we write L(R) instead of LX(R). Although the link is defined with respect to a fixed
point p E S and a fixed e, its homeomorphism class is independent of this point.



Proposition 2.1.1 If for every stratum S, the link of S (in X) is a (d-1-1)-sphere
where 1 = dim S, then X is a topological manifold.

Proof . Let p be a point in S. Then p has a neighborhood homeomorphic to the
topological join of the link of S with a small disk about p in S. If the link is a sphere,
this neighborhood is a ball. I

Proposition 2.1.2 If for some stratum S, the link of S is not a homology sphere,
X is topologically singular (ie, is not a topological manifold).

Proof . Let I be the dimension of S. For p E S, the link L(p) is the join of S t- '
with L(S). Recall that the join of A and B, written A * B is defined as I x A x B/l
where (0, a, b) - (O, a, b') and (1, a, b) - (1,a', b). Removing the subset 0 x A x B/I
leaves a space which retracts to B, and removing the subset 1 x A x B/ - leaves
a space which retracts to A. The intersection of these two open subsets retracts to
A x B yielding a Mayer-Vietoris sequence for joins. In our case, we obtain

S-- H.(S '- 1) 0 H.(L(S)) -- H.(St_1) ( H.(L(S)) -+ H.(L(p)) --+ ---

From this exact sequence, one sees that if L(S) is not a homology (d - 1 - 1)-sphere,
L(p) is not a homology (d - 1)-sphere, hence is not homeomorphic to a sphere. I

2.2 Convex Polytopes as Stratified Spaces

As a simple example of a stratified space, consider a convex polytope P in Rd (assume
0 is in the interior of P). Let P be the corresponding partially ordered set (poset) of
faces, and let P1 denote the subset of 1-faces for l = 0,..., d. If relint a denotes the
relative interior of a face a, then {relint ala E P} is a disjoint collection of (smooth)
manifolds whose union is P. If V, is the affine linear subspace spanned by a, we
define the tubular distance function p, to be the usual Euclidean distance to V,, and
the projection 7r, to be orthogonal projection onto V,. Let f : a --+ R be any smooth
function which is positive on relint a and zero on the boundary of a, and define the
tubular neighborhood tub (a) to be the the set

{z E Plp,(z) < f(x)}.

It is clear that this control data makes P into a Thom-Mather stratified space.

The stratified link of an 1-face a E P (as defined above) is itself stratified by
intersecting with subfaces of a, and the combinatorial data of this stratification (ie,



the poset of closed strata ordered by inclusion) is equivalent to that of a certain
convex polytope, called the combinatorial link L, of a in P. Explicitly, given a vertex
v of P, let H be a hyperplane separating v from the other vertices of P. Then L, is
the convex polytope H n P, and has the collection {H n ala E P} as its faces. More
generally, for any 1-face a, we can choose a transverse d - I plane E which meets a
in exactly one point p. Then E n P is a convex polytope and the link of a in P is
defined to be the link of p in E n P. Notice that the combinatorial type of the link
does not depend on the choices of H or E.

When refering to the link of a face as a (stratified) topological space, we will
always mean the stratified link with respect to a fixed point of the face, a fixed e, and
the control data for P defined above. If we are only interested in the combinatorial
information of this space, however, we will often use the convex polytope link of the
previous paragraph.





3 The Complex Case k = 1

3.1 Toric Spaces

The key ingredient in the construction of a toric space is the collapsing data, the idea
being that as one approaches a k-face of the polytope from the interior, the d-torus
collapses to a k-torus. In order to retain nice topological properties (eg, Hausdorff)
and to provide a tubular neighborhood as in Section 2, we assume that the collapsing
is a fibration (SI)d -_+ (S1)k. That is, points of the d-torus are identified when they
are in the same fiber of this map. Following the algebraic notation [24], we fix the
d-torus T d = N Oz S 1 where N is a free Z-module of rank d. A sublattice of N is
unimodular if it is a direct summand. A rank d - 1 unimodular sublattice A of N
defines a d - 1 dimensional subtorus TA = A 0 S'; the projection f(A) : Td -- T'/TA
onto the i-dimensional quotient is a (trivial) fibration. With this model in mind, we
let GI(N) denote the Grassmanian of unimodular rank l sublattices of N and make
the following definition (as in [5]).

Definition 3.1.1 A (complex) characteristic function is a map

A, : P ,- Gd-t(N)

for 0 < 1 < d satisfying the condition: if 7 is a face of a, then AXl(o) is a sublattice of
AI(T).

By the characteristic value of A, at a we mean the sublattice AX(a).

Definition 3.1.2 The toric space TcAI associated to the polytope P and character-
istic function A, is the topological space P x Tdl/ , where two points (x, s) and (x, t)
are equivalent if x E relint o and s and t have the same image in the quotient torus
TPdIT,\,().

Proposition 3.1.1 Let y : TcA, -- P be the natural projection. Then TcA, admits
the structure of an abstract stratified space with strata S, =- -'(relint a) as a ranges
through all faces of P.

Proof . Let P be stratified as in Section 2.2. We "lift" the stratification from P
to Tc A,. Let S = S, and define a tubular neighborhood Tub (S) by p-~(tub (a)), a
distance function by ps = p, o p, and a projection map rs = (r,, f(A,(o))).
I



The action of the torus T d on itself defines an action on the quotient torus Td/TA
which is equivariant with respect to the projection. As a result, TcA1 has a Ti action
with P as the orbit space.

REMARK. Definition 3.1.1 works in a slightly more general setting. Let P be a
regular, finite CW decomposition of the d-ball with one maximal d-cell. Let P be
collection of closed cells of P partially ordered by inclusion, and generalize the notion
of 1-faces to include 1-cells of P. It is clear that a convex polytope is just a restricted
case of such a cell decompostion and that the definitions of A• and TcA, extend to the
more general complex. In order to describe all toric 'varieties, it is necessary to use
this more general setting, but for most of our results we will focus on the case where
P is a convex polytope. (As we remark in the next section, all projective varieties fall
into this class.)

3.2 Toric Varieties

To see that the above construction adapts to the algebraic theory of toric varieties,
recall that a toric variety is given by gluing together various afine toric varieties
according to the data of a rational cone complex E (Section 1.2). Recall also that if
X(E) is projective, there exists a convex polytope whose associated cell complex is
dual to E in the following sense. For every 1-dimensional cone in E there is a unique
codimension I face of the polytope and this correspondence is inclusion reversing. Oda
gives a detailed account of how this dual polytope is obtained from E [25]. We now
take P to be this dual complex and define a characteristic function AX by mapping
each 1-face to the unimodular sublattice spanned by the intersection of the dual cone
with the standard lattice N C Rd. Notice that the definition of a cone complex is
precisely the information necessary to guarantee that A• be a characteristic function.
The toric space TcA1 is homeomorphic to the underlying topological space (in the
Euclidean topology) for the projective variety.

Even if X(E) is not projective, E has a dual cell complex P which is a regular,
finite cell decomposition of the d-ball with one maximal cell. In light of the remark
of Section 3.1, we can still form TcA1 and, again, it is homeomorphic to X(E).

A priori, two adjacent facets of a toric space could have the same characteristic
values, in which case the value of the characteristic function on the intersection would
not be uniquely determined. In the case of toric varieties, however, the characteristic
function is completely determined by its values on the facets of P (that is, the 1-
dimensional sublattices spanned by the rays of E). The geometry of the cone complex
restricts the characteristic values on the facets in such a way that a unique (n - 1)-
dimensional unimodular sublattice of N is determined for each i-face. In fact, a
topologically concise presentation of the toric variety is as a cell complex P with an



integral d-tuple (a generator for the 1-dimensional sublattice) labeling each facet.

REMARK. Another approach to toric varieties, and perhaps more historically ac-
curate, is to consider a d-dimensional subtorus of the standard algebraic torus (C')"
acting on pn+l. The closure of the orbit of a point under this action is, after normal-
ization, a toric variety. The algebraic action is given by n + 1 Laurent monomials in
the d coordinates of the subtorus. The exponents of each monomial give a d-tuple
of integers corresponding to points in the lattice of characters of the d-torus. The
results of Section 2 are more in the spirit of this approach.

3.3 Nonsingularity and Cohomology of Toric Spaces

The conditions for a toric variety to be a nonsingular variety are well known. The
following theorem in the algebro-geometric setting can be found in [25].

Theorem 3.3.1 A toric variety X(E) is nonsingular if and only if for every c E E,
c is basic.

If P is a convex polytope dual to E and A1 is defined as above, this basic condition
in the theorem is equivalent to saying that every vertex of P is contained in exactly
d facets and that the sum of the d characteristic values on these facets is precisely
M. We call such a characteristic function basic as well. In [5] one direction of the
analogous statement for toric spaces is proved:

Proposition 3.3.1 TcA 1 is topologically (and differentiably) nonsingular if P is sim-
ple and A1 is basic.

Nonsingular toric spaces are precisely the objects studied in [5]; we restate one
of the main results, the cohomology calculation, and refer the reader to this paper
for a topological proof. One of the key ingredients in this proof is the geometric
interpretation of the face ring of P as the equivariant cohomology of the toric space.
(The algebro-geometric version of this theorem, the computation of the Chow ring,
can be found in [4].)

We first introduce the following notation. The f-vector of a d-dimensional simple
polytope P is the vector (fo, fl,... , fd) where ft is the number of 1-faces. We will
denote by f(t) the degree d polynomial whose Ith coefficient is fi. The h-vector of P
is the vector (ho, hl,..., hd) where hl is the lth coefficient of the polynomial f(t - 1).
There has been much research focusing on these two combinatorial invariants, the
most notable being McMullen's conjectures concerning which vectors can arise as

f-vectors of a simplicial polytope [19, 28] (note that in most of these papers, the
definitions of f and h are dual to the ones given here).



Just as in the projective variety case mentioned previously, in the nonsingular
case the characteristic function Ax is determined by its values on the facets. In fact, if
al, a2 ... , a, are the facets of P, it is enough to specify primitive elements ai E A, (ai)
for i = 1,2,..., 7l. Assume without loss of generality that the first d facets in this list
all share a vertex, so that al, a 2,..., ad form a basis for N. Let 61, 62,..., •d be the
dual basis.

Consider the polynomial ring A = Z[X 1,X 2,... X,, where 77 is the number of
facets of P. Let I be the ideal generated by all monomials of the form Xi, Xi2;, X;,
where ai n ai2 n ... ai, is not a face of P. The ring A/I is called the face ring of P.
Finally, let J be the ideal generated by the linear relations

r = 6(ai;) .X; (1)
i=1

one for each j.

Theorem 3.3.2 (Davis and Januszkiewicz) The cohomology ring of a nonsingular
toric space TcA 1 is isomorphic to A/(I + J) where the generators Xi are degree 2.
The betti numbers are given as dim H2 1(TcA•X) = ht in even degrees and zero in odd
degree.



4 The Real Case k = 0

4.1 Real Toric Spaces

Again we start with a convex polytope P in Rd with corresponding cell complex P.
Sitting inside the torus Tad is the discrete subgroup Tod = No SO where SO = {+1} C
S'. Thinking of So as the additive group Z/(2), we see that Tod is naturally isomorphic
to N 0 Z/(2) t (Z/(2))d. The product P x Tod is, therefore, 2d copies of the polytope
P, and because it is a subset of P x Td, we can restrict the equivalence relation defined
in Section 3.1. We call the resulting space the real part of Tc A.

Of course, we can define such a space without any reference to the complex case.
Let G1(N 0 Z/(2)) denote the Grassmanian of I dimensional Z/(2)-subspaces of N 0
Z/(2).

Definition 4.1.1 A real characteristic function is a map

A0 : P7 -+ Gd-t(N 0 Z/(2)

which satisties the condition: if r is a face of a then Ao(a) is a subspace of Ao(r).

If Ao is a codimension 1, Z/(2)-subspace of Tod, denote by f(Ao) the projection
To --, Td/ Ao.

Definition 4.1.2 The real toric space associated to A0 is

TRAo = P x Todl /

where (x, s) - (x, t) if x E relinta and s = t mod Ao(o). That is (x,s) - (x,t) if
f(Ao(a))(s) = f(Ao(a))(t) .

As in the complex case, the control data of P lifts to TRAO, showing that

Proposition 4.1.1 TRAO admits the structure of a stratified space.

The strata obtained in this way consist of 21 connected components, each home-
omorphic to an open 1-cell, over each i-face a. These components are indexed in a
natural way by the elements of Tdl/Ao(a). As in the complex case we let S, be the
union of these components, so that

S, = t- 1(relint a)

(where 1L is the projection TRAo -- P). In fact, 1L is the quatient map of the natural
action of Tod on TRAo.

The image Ao = A 0 Z/(2) in Tod of a unimodular sublattice A C N of rank d - 1
is a Z/(2)-subspace with codimension 1. Consequently, for a given A1, we can define
the real reduction Ao by Ao(a) = A(a) 0 Z/(2); Ao is obviously a real characteristic
function, and the associated real toric space is the real part of TcA 1.



4.2 Real Toric Varieties

By a real toric variety we mean the real points of a complex toric variety. Because
we are only concerned with the Euclidean rather than Zariski topology of such a
space, we will not get into the pathologies of real algebraic geometry. Regarding this
difference, there is one clarification that needs to be made. We call a real variety
nonsingular if it is a topological manifold, whereas real algebraic geometers (eg, [3])
impose the more stringent condition that the differentials of the regular functions at
each point span a fixed-dimensional vector space (the cotangent space at the point).
Our definition of nonsingular, then, allows for the possibility of a cusp.

As an immediate consequence of this understanding of real toric varieties, we see
that all real toric varieties are real toric spaces. Indeed, just take the real part of the
complex toric space corresponding to the complexification of the real toric variety.

4.3 Nonsingularity

We now state and prove the following conditions for nonsingularity of TRA0. As in the
complex case, it is the necessity of these conditions that requires work; the sufficiency
is an easy exercise and can be found in [5]. Because TRAo will be nonsingular only
if the links of the strata are all homology spheres, we will need the following concise
presentation of these links.

Lemma 4.3.1 Suppose TRAo is a real toric space and a is an I-face of P with link
L,. The topological link L(S) of the stratum S = S, is the stratified space

L(S) = L, x Ao(a)/ ~

where (x,s) - (x,t) if x E relint (r n L,) and s t mod Ao(r).

As in section 3.3, we call the real characteristic function Ao Z/(2)-basic if its values
on the facets about any vertex of P form a Z/(2)-basis for Tod. In particular, P must
be simple.

Theorem 4.3.1 TRAo is nonsingular if and only if Ao is Z/(2)-basic.

Proof . We prove the necessity. If A0 is not Z/(2)-basic, choose an 1-face a E P
whose adjacent facets have linearly dependent characteristic values and such that I
is maximal. Consider the stratum S = S,. We will show that the link L = L(S) of
this stratum is not a homology (d - I - 1)-sphere; hence, by Proposition 2.1.2, TRAo
is singular.



Consider the presentation of L given in the lemma. Choosing 1 maximal implies
that L, is simple and for a fixed vertex v E L,, the surrounding facets have indepen-
dent characteristic values (otherwise, the I + 1 face of P corresponding to v would
contradict the maximality of a). Form a CW-filtration for L as follows: let Li be the
preimage in L of all i-faces of L, not containing v, for i = 0, 1,..., d - 1 - 2. Notice
that L is obtained from Ld-1-2 by adjoining two (d - 1 - 1)-disks so that with Z/(2)
coefficients

Hd-I-1 (L, Ld--2) = Z/(2) ( Z/(2).

The chain complex C. = H.(L., L.- 1) computes the Z/(2) homology of L, so we need
only show that it is different from the homology of a (d- - - 1)-sphere. The preimage
in L of each facet of L~ is a Z/(2)-cycle in Cd-1-2 and these are clearly independent.
Because the two (d- 1 - 1)-cells of the complex were obtained by gluing along d- - - 1
of these facets of L,, the kernel of the differential Cd-1-2 -+ Cd-1-3 has dimension
at least 1. If it is greater than 1, the (d - 1 - 2) Betti number of L is positive, in
which case L is not a homology (d - 1 - 1)-sphere. If the kernel dimension is equal
to 1, L, is a simplex and because A• fails to be basic at o, the facet of L, opposite v
has a characteristic value which is dependent on those of the other facets. In terms
of the chain complex, this means the boundary map Cd-1-1 - Cd-1-2 is zero; hence,
Hd--_1 = Z/(2) E Z/(2) Hd-1-(Sd-I1-). In this case, TRAO fails even to be normal,
let alone nonsingular. I

REMARK. The requirement that P be a convex polytope is not necessary for the
above proof. We could use, instead, any simple cell decompostion of the (d- 1)-sphere
together with a Z/(2)-basic A0. The existence of a Morse function in the computation
of the homology in the next section, however, does need the convexity of P.

4.4 The Cohomology of Real Toric Spaces

In this section we show that the Z/(2)-cohomology ring of a nonsingular, real toric
space has the same presentation as the complex case (section 3.3). Throughout this
section Z/(2) coefficients will be assumed, and A will denote the polynomial ring
Z/(2)[X 1,X 2 ,... ,X,]7 where r is the number of facets of P. Again we label the facets
al, a2,...,a , and assume that the first d of these facets all share a vertex. Let I
be the ideal of A generated by monomials not supported on a face of P (ie, as in
section 3.3). We choose the non-zero element a• E A0o(a) for i = 1, 2,..., ry. If TRAo is
nonsingular, we know from the previous section that A0 is basic, hence acl, 2,..., cd
form a basis for Tod . Let 61,62,... ,6d be the Z/(2)-dual basis and let J be the ideal
generated by the linear relations (1) of Section 3.3, now understood mod 2. The main
point of the following theorem is that the argument of [4] works as well in the real



case assuming only topological nonsingularity.

Theorem 4.4.1 (Mostly Jurkiewicz) If TRAo is nonsingular, then

H*(TRAo; Z/(2) = AI(I + J).

Lemma 4.4.1 The mod2 Poincare' polynomial is the h-vector

h(t) = ho + hit + - + hdtd

Proof . By duality, it is enough to compute homology. Choose a vector u in Rd
such that any affine hyperplane perpendicular to u contains at most one vertex of P.
Define a height function / : P -+ R by the formula p(x) = (x, u) where (,) denotes
the standard inner product on Rd. Order the vertices vl < v2 < ... < vm of P such
that p(vI) < P(v2) < ... < p(vm), and consider the filtration

Pi c P2 C ... C Pm =P

where P, is the union of all faces a with p(o) C (-oo, ,(vs)]. Let

Q1 c Q2 C '.-C Qm

denote the induced filtration in TRAO. Because P is simple, P, is obtained from Ps-1
by adjoining exactly one face of dimension, say, t, and Q, from Q_-1 by adjoining
exactly one t,-cell.

Finally, observe that the spectral sequence El, = Hp+q(Q,, Qq_1) degenerates
at E 2 since all of the attatching maps are two to one. In other words, the cell
decomposition for TRAo is perfect, and a simple counting argument completes the
proof. I

REMARK. Notice that by Poincar6 duality, the h-vector is symmetric: h(t) =
h(1/t)td. Writing this equality in terms of the f-vector for the simplicial polytope
dual to P and comparing coefficients, reveals the Dehn-Somerville equations for this
dual polytope.

For i = 1,2,... ,1, let Di be the preimage in TRAO of the facet ai. Di is a codi-
mension 1 cycle (a divisor in the case of a toric variety), and we denote by D* the
Poincar6 dual cohomology class in HI(TAR 0). Define a graded ring homomorphism
4 : A --+ H'(TRA) by sending the degree-one generator Xi to the class D! for
i = 1,2,..., 9. It turns out that this map is surjective; that is, the cohomology ring



is generated in degree one. Indeed, the preimage in TRAo of any I-face of P is the
transverse intersection of d - 1 distinct Di's, and the fact that these i-cycles generate
Hk(TRAO) follows from the explicit filtration given in the previous lemma. Transverse
intersections are dual to the cup product in that the following diagram commutes:

Hd-p (RAo) 0 Hdq (TRo) U * H2d-(p+q)(TRAo)

I n I
Hp(TRAo) 0 H(TRAo) Hp+q._d(TRo 0)

where the vertical maps are Poincard duality. Thus, the intersections

Di, N Di2 n' n Did_,

of distinct codimension-one cycles correspond to cohomology classes

D! U .,. U D ,:1 id-1

and these classes generate Hd-I(TRAo). But these classes are simply the images of the
monomials in the polynomial ring; hence, 4 is surjective.

Lemma 4.4.2 1 factors through A/(I + J).

Proof. Glue the 2 d polytopes together along the facets 1a, a2,..., ad; the result is a
single cell which, near the common vertex, looks like Rd near the origin. The preimages
of the facets lift to coordinate hyperplanes (the divisors have normal crossings), and
the linear relations, rl,..., rd, are simply the boundaries of the half-spaces containing
the cell relint P x 0/ -. Notice that this argument does not depend on the vertex:
a different choice of vertex gives a different set of generators for J. We have shown
then that J C kerl.

To see that I C kerO, just notice that if distinct ai ,..., ai, have empty intersec-
tion, we can regroup any monomial

-P' X- P ... oX
Z1 t2 to

as
(Xi, X;, . Xi,))(X1 -1XP?2-1 ... XS,-1)

But I(X, ... Xi,) = 0 since the corresponding cycles Di,,..., Di, are in general
position and have empty intersection. Hence ((E) = 0 and I C ker4D. I



Proof of theorem 4.4. 1. Finally, we invoke some algebra to show that the dimension
of A/(I+J) in degree 1 is precisely hi; hence, by Lemma4.4.1, A/(I+J) -+ H*(TRAo)
is an isomorphism.

The face ring A/I has Poincar6 series (see, eg., [27])

00 0 hit'E H(k)t= (1 -t (2)
1=0=o (1 - t)=0

where H(l) is the dimension of A/I in degree 1.

Furthermore, A/I is Cohen Macaulay; hence, our sequence ri,..., rd is regular
(ie., in the ring

A
I + (rl,... , ri-1)'

ri is not a zero divisor) if and only if A/(I + J) is finite dimensional. But if r1 ,..., rd
is regular, then passing from

A

to
A

I + (rl,..., ri)

alters the Poincar6 series by a factor of (1 - t). Applying this factor d times to
equation (2) gives the Poincard polynomial for H*(TRAO). It remains to show, then,
that A/(I + J) is finite dimensional.

In fact, A/(I + J) is generated by monomials Xi, Xi;, X;, where ai,,...,ai, are
distinct facets whose intersection is a face of P. To see this, let

E=- X .P2 .. XP

where ai,,..., a, are distinct and intersect in a face. In particular, ai,,..., ci, are
linearly independent. If we can write E as a sum of monomials with strictly fewer
repetitions of factors, then applying induction to the number of these repetitions
would complete the proof. Toward this end, suppose without loss of generality, that

p, > 1. Choose 6 E (N 0 Z/(2))* such that

1 if j = 1
S(i = {l 0 otherwise

Substituting
Xi, = 6(a;) -Xi

for just one of the Xi's, produces a polynomial whose monomial summands all have
fewer repetitions than E. I



5 The Quaternionic Case k = 3

The fundamental obstacle to defining toric spaces over the quaternions H is that S3 ,
the unit quaternions, is not an abelian group. In particular, it is no longer the case
that any monomial x~1 x 2 

... x*y defines an (S3 )d-equivariant projection from (S3)d
to S3 . In order to obtain an interesting class of spaces, then, we drop this condition,
maintaining instead just enough structure to produce a stratified space. As a result,
quaternionic toric spaces will not have a natural Tad action. The group S3 , however,
does have a non-trivial group of inner automorphisms (unlike the real and complex
cases), namely SO(3). It turns out that the spaces we define do have a natural
SO(3)-action.

Recall that for real and complex toric spaces, the collapsing data over the faces
of P is determined by the characteristic function Ak. The range of the characteristic
function simply indexes a suitable class of fibrations (Sk)d --, (Sk)1 (where 1 is the
dimension of the face). In the quaternionic case, the range of A3 will be certain
subgroups of the free group on d letters, and again these will index an interesting
class of fibrations. These fibrations will be given, in general, by 1-tuples of words in
the d coordinates (quaternionic) of (S3)d. If SO(3) acts on an arbitrary product of
S3 's by acting on each factor simultaneously (by inner automorphisms), then all of
the fibrations (Sk)d ~ (Sk)l are SO(3)-equivariant. This fact allows us to define an
S0(3) action on quaternionic toric spaces.

5.1 Free Groups and Notation

Let E be a finite set with d elements. We denote by (E) the free group on the set E,
and for any subset W C (E), (W)E denotes the subgroup of (E) generated by W. If
H is any subgroup of (E), then it is itself a free group on some subset W C (E) ([26]).
The rank of a subgroup H is defined to be the cardinality of a minimal generating set.
We use the notation (E)I//H or (EIW) (depending on the context) for the quotient
group (E)/N where N is the smallest normal subgroup containing H.

A subset W C (E) of 1 words will be called unimodular of rank I if there exists
another subset W' of d - 1 elements such that (W U W')E = (E). Likewise, a
subgroup H of (E) will be called unimodular of rank I if there exists a unimodular,
rank 1 generating set for H (it is clear that this is the same rank defined in the
previous paragraph); in this case, we will call W a basis for H. Notice that W' is
also unimodular (of rank d- 1), and any such unimodular pair {W, W'} will be called
complementary. Because the subgroup generated by a unimodular set W is itself a
free group on W we will often write (W) instead of (W)E.

An obvious, but useful fact about a unimodular, rank 1 subgroup (W) is that the
quotient group (EIW) is free of rank d - 1. Explicitly, if W' is any complement for



W, then the composition
(W')E c-+ (E) -, (EIW)

is an isomorphism.

Definition 5.1.1 For any topological group F, define F(EIW) to be the function
space

Homgp((EIW), F).
F(EIW) is naturally pointed with base point * : w o 1 for all w E (EIW).

REMARK. Although in the nonabelian case F(EIW) does not have a natural
group structure, it always has the structure of an Aut P-space where Aut F is the
group of inner automorphisms of F. For g E r, let pg E Aut r be the automorphism
h ý ghg- '. If t E F(ElW), then w ý gt(w)g- 1 is a well-defined homomorphism
from (EIW) to r, hence t F gtg- ' defines a natural Aut r action on 1(EIW).

There are several straightforward consequences of the definition, which we list as
follows.

i. F(E) (= F(E10)) is homeomorphic to the pointed space (Fd, 1).

ii. If W is unimodular of rank 1, then (W) c- (E) induces an surjective
Aut F-equivariant pointed map F(E) -+ F(W) and F(W) is homeomor-
phic to F1.

iii. If W is unimodular of rank 1, then the surjection (E) -f (EjW) induces
an injective (equivariant) pointed map F(EIW) - rF(E). r(EIW) is
homeomorphic to Fd- t .

Proposition 5.1.1 In fact, if W C (E) is unimodular of rank 1, then 1(E) --+ F(W)
is a trivial fiber bundle with fiber F(E W) - pd- t .

Proof. Let IV = {wi,..., w}. Then we can find a W' = {w',...,w'_,} such
that W and W' are complementary. A point t E F(W) is uniquely determined by its
coordinates tl = t(w 1 ), ... , t, = t(wt), tt+1 = t(w'), ... , td = t(w- 1). This determines
a homeomorphism F(W) - rd by sending t to the d-tuple (t 1,..., td). Likewise, a
homeomorphism F(W) - r' is given by t F-+ (t(wi),..., t(wt)). With respect to these
homeomorphisms, the map F(E) - F(W) corresponds to the projection Fd -+ IF
onto the first I factors.

It remains to show that the inclusion of the fiber over * E F(W) is induced
by the map (E) -+ (EIW). But (EjW) is freely generated by the image of W',



say {t12,.. ., ~-}. As before we have a homeomorphism (EIW) -, rd- ' given by
t ý (t(fl),..., t(i4-d)), and the map F(EIW) - P(E) corresponds to the inclusion
(ti,..., td-1) * (1, ,..., 1, tl ,... td-1) of the last d - 1 factors. I

5.2 Quaternionic Toric Spaces

In this section we will define quaternionic spaces. It is helpful to use a coordinate
free definition of the quaternionic torus Tad. Fix a set E = {el,..., ed} and define
Tad = S 3 (E). (This definition is dual to that of Td in that Tld = N 0 S1 is naturally
isomorphic to Hom(M, Si) where M = Homz(N, Z). We will elaborate more on this
connection in Section 5.5.) Let G1((E)) denote the "Grassmannian" of all unimodular,
rank 1 subgroups of (E), and for (W) E Gl((E)) let f((W)) be the induced map
Td S3(W).

Definition 5.2.1 A quaternionic characteristic function is a map

A3 : P- Gl((E))

(for I = 0,... , d) satisfying the condition: if r is a j-face of a, A3((r) is a unimodular,
rank j subgroup of A3 ().

Definition 5.2.2 The quaternionic toric space associated to A3 is the topological quo-
tient

THA3 = P T3d/
where (x, s) - (x, t) if x E relint T and f(A 3(a))(s) = f(A 3 (*))(t).

Proposition 5.2.1 If i is the projection THA 3 -4 P, then THA 3 admits the structure
of a stratified space with strata {Sja E P} where S, = tC-(relint o).

Proof . Lift the control data on P (Section 2.2) as follows. For S = S,, let
Tub(S) = -l'(tub(a)), ps = P, o i, and 7rs = (re,f(A3(a))). The compatibility
condition in the definition of A3 together with the fact that f is a trivial fibration
guarantee that this data makes THA 3 into a stratified space. I

As mentioned in Section 5.1, the spaces T3d = S3 (E) and S3(A3(a)) all have
natural actions by the inner automorphism group of S3 , and all of the maps f(A3 (a))
are equivariant with respect to this action. The inner automorphism group itself is
isomorphic to the abstract group SO(3) (conjugation by g E S3 fixes every element
if and only if g = ±1, and S 3 /{1}) = SO(3)). Combining these facts gives the
following:

Proposition 5.2.2 The natural action of SO(3) on T3d extends to an action on THA 3.



5.3 Generalized Quaternionic Spaces and Links

Just as the links of strata in Section 4 had nice topological presentations, so do the
links of quaternionic spaces. In fact, a simple generalization of the characteristic
function A3 produces a class of spaces which includes the links of all strata. (A close
examination of the presentation of links in Section 4 will reveal a similar situation).
The generalization is to allow the number of 3-sphere factors in the generic fiber over
the polytope to be greater than the dimension of the polytope.

Definition 5.3.1 Let P be a c-dimensional polytope (with c < d) and let Pt be the
set of 1-faces of Q. A generalized characteristic function A9 on P is a map

A9g : --- G+(d-c)((E))

satisfying the condition: if r is a j-face of a, then Ag(r) is a unimodular, rank j
subgroup of A•(o).

Definition 5.3.2 The generalized quaternionic space THA 9 is the quotient

THA9 = P X T3d-

where (x, s) - (x, t) if x E relint a and f(Ag(a))(s) = f(Ag(a))(t).

The important example of a generalized quaternionic space is the link of a stratum
in a quaternionic space. Let THA 3 be a quaternionic space over the d-dimensional
polytope P. Let a be a codimension c+ 1 face of P. Then the link L, of a (see Section
2.2) is a c-dimensional convex polytope inside P. Let £L = {L, n 7it E PL+(d-c)} be
the collection of i-faces of Lo.

Lemma 5.3.1 The quotient group (E)//A 3(a) is free of rank c + 1 and for any L, n
7E L1t, the image of the natural inclusion A3(7)//A 3 (o) --+ (E)//A3 (a) is unimodular
of rank l + 1.

Proof . Choose a basis W1 for A3 (a). Since A3 (a) is unimodular in A3 (7), we can
find a complement W2 in A3 (r). Since A3 (r) is unimodular (with basis W, U W2 ) in
(E) we can choose a further complement W3 in (E). The respective ranks of the
unimodular sets W1, W 2, and W3 are d - c - 1, 1 + 1, and c - 1. The composite

( -W2) c-, (A3()) --, A3()//A 3(o)

is an isomorphism, so A3(r)//A3(a) is free of rank I + 1. Likewise, the composite

(W2 U W3 ) L-+ (E) -+ (E)//A3(a)



is an isomorphism, so (E)//A3(a) is free of rank c + 1. The image of the inclusion

A3(r)//A 3(o) c-- (E)IIA3(a)

is generated by the image of W2, and the image of W3 in (E)//A3(a) is the desired
complement. I

We can now define a generalized characteristic function on the link L,

A' : 4c, --, G,+((E)II13(a))

by A-(L, n 7) = A3(r)//A 3(a).

Theorem 5.3.1 The link of S, in THA 3 is homeomorphic to the generalized quater-
nionic space THA 9.

Proof. Let S = S, and recall that the link L, in P is a level set of the tubular
distance function p, restricted to a fiber of the projection 7r,. The map 7r,lL : L, -,
{p} lifts to a fiber bundle

-'(Ln,) -- -'( p ). (1)

It is clear that - 1'(L,) is the space

L, x T3d

where the equivalence relation is the same as the one defined by A3 : that is, (x, s) ,
(2, t) if x E relint 7 (notice a -< r) and f(A 3(r))(s) = f(A 3 (r))(t). Trs maps this space
to 1 -'(p) = S 3(A3 (a)) and the fiber over * is clearly the space TuA9 defined above.

Finally, recall that the link L(S) is defined as a generic fiber of the bundle
Tub (S) -+ S. Using basic facts about stratified spaces, one can show that this
bundle is equivalent to the bundle

Rd- c- 1 X P-1(L,) -- Rd- c-1 X - 1 (p)

Hence the fiber is homeomorphic to the fiber of (1), completing the proof. I

5.4 Nonsingularity

Having an explicit presentation of the links of strata makes it possible to determine
(at least in part) when THA 3 is topologically nonsingular. A necessary condition for
nonsingularity is that the polytope P be simple. A sufficient condition is that the



characteristic function satisfy a certain set of conditions relating to automorphisms
of the free group (E). As we will see later (in Section 6.1), these conditions are not
the best possible, but for now, they are the easiest to state and will suffice.

If a is a face of a convex polytope P, the open star of a is the subset

stO (a) = U relintr.

The collection {sto (v)lv E P0 } is an open cover of P, hence lifts by P1' to an open
cover of THA 3. When P is a simple polytope, stO (v) is homeomorphic (and combina-
torially equivalent) to (R>0 )d. This motivates the following local construction.

The Standard Local Model

Let B = (R>o)d with coordinate axes labeled 1,2,..., d. Let B be the associated
complex of faces, indexed by subsets of (1,2,..., d}. If (E) is the free group on E
and W = {wI,..-.,Wd)} is an ordered basis for (E), for each I C (1,2,...,d}, let W1
be the unimodular subset {wjil E I}, and define

Aw : B1 -+ G,((E))

by A(I) = (WI). It is clear that the resulting space

THAw = B x T•d

is homeomorphic to Hd.

Proposition 5.4.1 Let THA3 be defined over the simple polytope P. For each vertex
v, index the edges containing v with the numbers 1,... , d, so that the remaining faces
containing v are indexed by subsets of (1,2,..., d}. If for each vertex of P, there is
some basis W such that A3(aI) = Aw(I) for all subsets I C (1,2,...,d}, then THA 3
is topologically nonsingular.

Proof . THA 3 is covered by open sets of the form • 1 (sto (v)), and each of these is
homeomorphic to TH(Aw). I

Proposition 5.4.2 If P is not simple, THA 3 is singular.

Proof . If P is not simple we can find an 1-face a which is the intersection of N > d-l
facets. Then L, is a c = d - l - 1 dimensional polytope having N codimension 1



faces. By Proposition 2.1.2, it will be enough to show that the link of S, is not a
homology (4c + 3)-sphere.

Let A9 be as in Section 5.3 so that the link of S, is homeomorphic to the generalized
quaternionic space THA9. Let Li be the union of all i-faces of Lo; that is,

L c L, cL ... c Lc = La

is the usual skeletal filtration of the polytope L,. Setting Xi = -r'(Li) gives the
induced filtration

Xo c X, c C... X= TH'A,9

whose associated rational homology spectral sequence E,,j = Hi+j(Xi, Xi-1; Q) abuts
to H.("THA).

If £i is the collection of all i-faces of L,, then the pair (Xi, Xi-1) is homeomorphic

V (D' x (S3)i+, Si-1 x (S3)i+l)

where D' denotes the i-disk; hence,

H.(Xi, Xi_ 1 ) C -H.(S') 0 H.((S 3)i+l) t- $ H.+i((S3)i+l).
TE:i rECi

If fi is the number of i-faces of Lo, then the dimension of the
Ei,3j = Hi+3j(Xi, Xi- 1) is

fi -(
i+1

3

spectral sequence entry

(2)

and zero for other entries. Consider the block of the spectral sequence

i+j= 4c- 1

Because d is the only nonzero differential hitting Ec-1,3c = H4c- (Xc-1 Xc- 2 ), the
dimension of the cokernel of d is the same as the dimension of H4c-1(THA 9). But

Ec- 1,3c - d



according to (2), H4c(Xc, Xc- 1 ) has dimension c + 1 while H4c-1(X-1, Xc-2) has
dimension fc- 1 = N. Since N > c+ 1, the cokernel has positive dimension, and THAg

is, therefore, not a homology (4c + 3)-sphere. I

5.5 Cohomology of Nonsingular Quaternionic Spaces

Throughout this section we will assume that THA 3 satisfied the conditions of Propo-
sition 5.4.1. Namely, P will be a simple polytope and the characteristic function will
be locally equivalent to a standard model. We will show that under these conditions,
the cohomology ring of THA 3 is exactly what one would expect given the real and
complex analogues.

Let M be the abelianization of the free group (E), and for any word w E (E), let
Wab be the image of w under the natural map (E) -4 M. Then M, isomorphic to Zd,
is naturally generated by the images e b, eb,.. ., eb. The image of any unimodular
subgroup (W) C (E) is a unimodular sublattice of M. Our choice of the letter M
is not coincidental. Recall that the characteristic function in the quaternionic case is
dual to that of the real and complex case. If N is the dual Z-module Hom(M, Z), the
following table lists the possible presentations for the "tori" as well as the range of
the characteristic function.

As in the real and complex cases, we let l,a2,... ., o, be the facets of P and
assume the first d of them share a vertex. Then there is some basis W for (E)
such that for j = 1,2,...,d, A3(aj) = Aw(I) where I = {1,2,...,j,...,d}. By
replacing (E) with an appropriate automorphic image, we might as well assume that
this basis W is the standard basis {el, e2,..., ed}. For each facet ai, the image A3 (aO)"b

is a rank d - 1 unimodular sublattice of M, whose complement (ie, nullspace) in

Real Complex Quaternionic

k= 0 1 3

Tk = N 0 Z/(2) N ® S'

Homz (M, Z/(2)) Homz(M, S1) Homgp((E), S3 )

Ak(a) C Gd-a(N 0 Z/(2)) Gd-I(N) Gl((E))



N = Hom(M, Z) is a unimodular rank 1 sublattice. Let ai E N be a primitive
element of the complementary sublattice for A 3 (ai)ab for i = 1,2,..., 7t. According to
the assumptions of Proposition 5.4.1, al,..., cad is a basis for N. In fact, by design,
it is dual to the basis {eb, • b,...,e e b for M.

Let A be the polynomial ring Z[X 1, X 2 ,..., X,]. Let I be the ideal generated by
monomials of the form Xi, Xi, -- X;, where oi, n i, 2 ... o i, is not a face of P, so the
ring A/I is the face ring of P. Let J be the ideal generated by the linear relations

i = 1a;i(eyb) . xi (3)
i=1

for j = 1, 2,..., d. In this section we will prove:

Theorem 5.5.1 The integral cohomology ring of a quaternionic space THA 3 satisfying
the conditions of Proposition 5.4.1 is isomorphic to A/(I + J) where the generators
X; are in degree 4.

As in the real and complex cases, we first determine the Betti numbers of THA 3,
and then compare these to the dimensions in each degree of a certain quotient of the
face ring of the polytope P.

Lemma 5.5.1 The Poincard polynomial of THA 3 is the h-vector

h(t 4 ) = ho + hit4 + h 2t8 + ... + hdt 4d

Proof. The proof is the same as the real and complex case. We construct a relative
cell decomposition such that the dimension of every cell is a multiple of 4, and then
we count the number of cells using the combinatorics of the polytope. Choose a
vector u in Rd such that any affine hyperplane perpendicular to u contains at most
one vertex of P, and define a height function [ : P - R by the formula ý[(x) = (x, u)
(the standard inner product on Rd). Order the vertices vl < v2 < ... < vm of P such
that 0(vI) < 0(v 2) < ... < 4(v,), and consider the filtration

Pi C P2 C ... C Pm = P

where Pi is the union of all faces a with 4[(a) C (-oo, [(vk)]. Let

Q1 C Q2 C ... C Qm = THA 3

be the induced filtration of THA3. Because P is simple, Pi is obtained from Pi- 1 by
adjoining exactly one face of dimension, say, I. The local conditions on the charac-
teristic function A3 guarantee that Qi is obtained from Qi-, by attaching exactly one
cell of dimension 41.



Since nonzero entries of the associated spectral sequence E', = Hp+q(Qq, Qq_)
occur only in every fourth diagonal, the spectral sequence degenerates at E 2. The
cell decomposition is, therefore, perfect and a simple counting argument completes
the proof. I

We now give a class of geometric chains (certain oriented subsets) for THA3 which
generate the homology and whose intersections will determine, via Poincard duality,
the ring structure of H*(THA3). There are various ways to make the concept of
"geometric chain" rigorous. For example, one could find a triangulation of THA3 for
which these geometric subsets are genuine simplicial chains (for an exposition of the
subject with further references, see [17, Appendix 2]).

Let p : THA 3 -- P be the natural projection, and for each i-face a of P, consider
the subset yro-(a) C THA 3 (so -'(o ") is the closure of the stratum S, from Proposition
5.2.1). Because C1 (a) = a x Tdl/ has relative interior homeomorphic to relint a x
S3 (A3 (a)), an orientation for i-1r(a) is determined by an orientation for a together
with an orientation for S3 (A3 (a)) - (S3 )'. We fix, once and for all, an orientation
for each face a and fiber S3 (A3(a)) and denote by Do the oriented geometric chain

p- 1(a). In the case of facets we choose orientations more carefully, to simplify later
calculations. Having fixed an orientation for P, the geometric boundary is given by

17

OP = • +hi
i-=1

where a,..., a n are the facets of P. We choose the orientations for ai which make
all the signs positive.

In fact, the D, are all geometric cycles, since the boundaries are always supported
on a union of chains with dimension 4 less than that of D,. And because the collection
{D, ja E P} refines the perfect cell decomposition of the previous lemma (ie, each cell
of the CW decomposition is a union of interiors of Do's), these cycles generate the
homology of THA3. However, there are relations among this set of generators which
arise from boundaries of certain chains which we have not yet included. We describe
these chains next.

For j = 1,2,..., d, let Ej be the singleton set {ej} which generates the unimodular
rank 1 subgroup (Ej). Then the quotient map E -- (ElEj) induces an inclusion

S 3 (E(EJ) c- S 3 (E) = T d.

Since Td is the d-fold product of 3-spheres, this map is simply the inclusion of all but
the jth factor. Fix an orientation for the standard product (S3) d - 1 and choose an
orientation for S 3 (EIEi) so that the homeomorphism S3 (EIEj) - (S3)d- 1 given by

t ý-+ (t(ei),...,t(ej),...,t(ed))



is orientation preserving/reversing depending on whether j is even/odd. Having al-
ready fixed an orientation for P, this determines an orientation for the subset

P x S3(EIEj)/ ~

of THA 3. Let Ry be the geometric chain given by this subset and its fixed orientation.

Lemma 5.5.2 Let D 1, D2 ,... , D , be the geometric cycles corresponding to the facets
01,a2,...,a•. Then for j = 1,...,d,

ORj = • ri(eýb) - Di
i=1

where c~ E Hom(M, Z) is one of the two primitive elements in [A3(ai)ab ].

REMARK. The correct choice of ac obviously depends on the (arbitrarily) fixed
orientation for Di.

Proof . The support of ORj, supp ORj, is contained in

Uj supp Di.
i=1

Hence if (ORj : Di) denotes the incidence of Di in ORj, we need only show that

eb ý (ORj : Di) (j = 1,2,...,d)

defines a primitive element of [A3( i)ab].

Having fixed all of the orientations, it is not hard to see that (OR i : Di) is nothing
more than the degree of the map

S3 (EIEj) -+ S3(A3(aU))

obtained by restricting the natural projection S 3(E) -- S3 (A3(ai)) to S3 (EIEj).
To understand this map, we fix a unimodular set of words w, w2,... , Wd-1 which
generate A3 (ai) and, hence, a homeomorphism S3 (A3 (ai)) - (S3)d- 1 given by t '-*

(t(wl),t(w2),... ,t(d-1)). We can assume further that this homeomorphism is ori-
entation preserving (otherwise replace wl with wj- 1). Using our fixed orientation for
S3 (EIEj) as well as the fixed homeomorphism from S3 (EIE,) to (S3)d -1 (orientation
preserving/reversing depending on whether j is even/odd), it follows that (ORj : Di)
is (-1)' times the degree of the self-map 7rj -i : (S3)d-1 (S3)d-1 given by:

(tl,-.., td-1) F-+ (W (t, ... tj-1, 1, tj *... td-1), ... ,Wd-l(t , ... tj-l, l , tj, ... td-1))



where w(al, a2,..., ad) is the element of S' obtained by replacing the letters ei in the
word w with the coordinates ai in S3 and evaluating. Determining the degree of 7rj,
then, reduces to the following linear algebra computation.

By assumption, the elements wb, w•ab,..., wab span the unimodular sublattice
A3 (a i)ab of M. Relative to the natural basis for M, we can then form the (d - 1) x d
matrix [Wi] whose uth row is wab. Unimodularity implies that we can complete this
matrix to a d x d matrix [Wi] with determinant ±1. The last column of the inverse
matrix can be naturally identified with an element Wj' E N = Hom(M, Z) which is
clearly a generator of [A3 (i,)ab]i. Using the cofactor algorithm for inverting matrices,
we see that WI±(eqb) is -(-1)j times the determinant of the (d - 1) x (d - 1) matrix
obtained by deleting the jth column from [Wi] (the ± depending on the sign of
det [Wi]).

Now let On be the homology class in H3((S 3 )d-1; Z) corresponding to the uth factor
of (S3)d - 1, and let [rj] be the (d - 1) x (d - 1) matrix for the map (rj)* in degree 3
where we identify {Ou} with the uth elementary column vector. Using, for example,
the dual map in cohomology (the transpose of [rj]) and the cup product, one can show
that the degree of 7rj is the determinant det[wrj]. Hence (ORj : Di) is (-1)j times the
determinant of [7rj ]. The proof is completed, finally, by observing that the matrix
[7rj] is precisely the cofactor matrix given in the preceding paragraph (obtained by
deleting the jth column from [Wi]). Thus the linear map defined by

ej ý-- (Rnj : Di) (j = 1,...,d)

is, up to sign, precisely the primitive element W/I E N, and we take this to be our
covector ai. I

Proof of Theorem 5.5.1. We will compute the ring structure of H*(TH A3 ) using
Poincare duality and transverse intersections.

For each facet ao, let Di be the corresponding geometric cycle. Let Df be the
Poincare dual class in H*(TH A3), and define a graded ring homomorphism

": A - H*(THA 3 )

by sending the degree 4 generator Xi to the cohomology class D7.

Any 1-face a can be written as the intersection of exactly d - l facets of P, say

a = -- i n ai2 n • n aid-i,

and the corresponding cycle Do is the transverse intersection

D, n Di2, n...n Did_.



As we have already noted, these cycles generate the homology. By Poincard duality,
it follows that the cohomology classes

D U D U ... U D
S1 D2 Dd-i

generate H*(TH 3 ). But these classes are simply images of monomials in the polyno-
mial ring A, hence b is surjective.

The ring A/(I + J) is well understood; we refer the reader to any of a number
of sources (eg, [4]) for the proof that the degree 4i summand is free of rank hi (an
outline of this argument in the Z/(2) case was given in the proof of Theorem 4.4.1).
With this in mind, it will be enough to show that the ideal I + J is contained in the
kernel of the map D, since we would then have a surjective map

A/(I + J) -, H*(THA 3)

which preserves rank in each degree (recall Lemma 5.5.1). Such a map must be an
isomorphism.

To this end, let E be any monomial generator of I. Then there are disjoint, distinct
facets ai,, i2 ,... , ori such that - is of the form

XPI = XPz ...

where pi > 0 for all i. Because the corresponding cycles D1i,...,Di, have empty
intersection, the image 4(XX;, 2 ... Xi) must be zero. But this degree I monomial

Xi, Xi2, Xi, divides E; hence, LD(E) = 0 and I C ker (D.

It remains to show that J C ker (. This is just Lemma 5.5.2. J is generated by
rl,..., rd given in (3), and 1(rj) = Zi ai(e 6 )D!. By the lemma, the Poincar6 dual
class of this image is zero, hence I(rj) = 0. This completes the proof. I





6 2 Dimensional Quaternionic Spaces

In this section we will focus on the case d = 2, so the resulting spaces THA3 will have 8
real dimensions. We first show that THA 3 can be topologically nonsingular, but admit
no differential structure. In [21], Milnor describes certain exotic 7-spheres as principal
3-sphere bundles over the 4-sphere. Our examples of nonsmoothable manifolds are
precisely the Thornm spaces of these bundles.

For the remainder of the section, we will concentrate on smooth (oriented) exam-
ples, giving explicit transition functions for the tangent bundle. As a result of our
explicit cell decomposition into 41-dimensional cells, it follows that all quaternionic
spaces are 3-connected, hence our smooth examples are 3-connected 8-manifolds. Two
invariants which characterize such a manifold are the intersection form and the first
Pontrjagin class. In Section 6.3 we give formulas for these as well as other charac-
teristic numbers in terms of a certain sequence of pairs of integers arising from the
characteristic function A.

6.1 Milnor's Thom Spaces

Let P be a triangle in R2 with vertices mo, m1, m2 and edges 0o, al, a2 (ordered as in
Figure 6.1.1). A characteristic function on P is completely determined by its values
on the 3 edges, which we give as

A3(0'o) = (el) A3 (ol) = (e2) A3(o 2) = (ee~eb).

Let Ma,b be the quaternionic space THA 3.

mo

Ir 7Mt2

FIGURE 6.1.1

Lemma 6.1.1 Ma,b is a topological manifold if and only if a + b = ±1.

Proof . By Proposition 5.4.1, Ma,b is nonsingular, except possibly at the point
p = Y-'(mo), and by Theorem 5.3.1, the link of this point L(p) is homeomorphic to



the space
I x S3 x S'/ ,

where the identifications at the ends of the interval I are given by

(0, t1, t2) , (0,S 1,S2) where t2 = s2

and
(1,tl, t2 ) N (1,si,s 2) where t't 2 tb = s's 2s .

p =/-1 (mo)
D 4 x S3  S3 X S3 D 4 S3

Ip) I x S3 x SiI/I

Sn 11 1 rI ii
1u, 21 2 [2, 11

FIGURE 6.1.2 FIGURE 6.1.3

The subsets [0, ] x S3 x S3/1 and [1, 1] x S3 x S3/1 are mapping cylinders of
the two fibrations

S3 X S3 + S3

given by
(t 1,t 2) -H t2 and (t 1 ,t 2) 2- t *t2t .

Each of these mapping cylinders is homeomorphic to D4 x S3. If (t 1 , t 2) and (sl, s 2) are
the respective coordinates of these two pieces, then on the intersection S3 X S3, a point
with coordinates (tt, 1 t) in the first piece has coordinates (sl,s 2) = (t'1, t't 2tb) in the
second piece. The link of the point p is, therefore, homeomorphic to two copies of
D4 x S3 glued along the above diffeomorphism of their boundaries (see Figure 6.1.3).
Such a link is certainly simply connected, and by a Mayer-Vietoris argument, is a
homology 7-sphere if and only if a + b = ±1. By the Poincare conjecture in dimension
7, it follows that the link is homeomorphic to the 7-sphere, and (by Proposition 2.1.1)
that Ma,b is topologically nonsingular. I

Because {e2, ete 2e } does not always generate the free group, we can see that the
sufficient conditions of Propostion 5.4.1 to guarantee nonsingularity are not necessary.

We are now interested in putting a smooth structure on Ma,b. If we remove the
point p, the resulting space is homeomorphic to the open manifold obtained by gluing



together 2 copies of H2 along the open subset H* x H where the identification is given
by the map

(tF,t) + (t-1, ta tb

Notice that the second component of this map is linear in t2 while the first is simply
the transition function for the 2 contractible charts on the 4-sphere. In other words,
this open manifold is a 4-dimensional real vector bundle over the 4-sphere, and the
clutching function S3 -+ S0(4, R) is given by

The associated sphere bundle is the link of the missing point p, hence Ma,b is home-
omorphic to the Thom space of this bundle. The preimage of the shaded region in
Figure 6.1.2 is the disk bundle over the 4-sphere S,,. If a + b = ±1, then the link is a
manifold homeomorphic to S' and represents an element [L(p)] of the group of exotic
structures (known to be cyclic of order 28). [L(p)] is the obstruction to extending the
differential structure over the point p.

Proposition 6.1.1 If a + b = ±1 then Ma.b is smoothable if and only if 28 divides
the integer

(a - b)2 - 1
8

The invariant & is essentially the y-invariant given by Eells and Kuiper in [7]
(a = 28y).

Proof. It is enough to show that the smooth structure on the link L(p) is the
standard smooth structure on the 7-sphere. A complete invariant for the exotic 7-
spheres is obtained by considering a smooth, spin manifold X which is bounded by
L(p). Let p2[X] and r(X) denote the first Pontrjagin number of X (to be well-defined
we need to assume H4 (X, L(p)) -+ H4 (X) is an isomorphism) and the signature of
X, respectively. Then the number

A(x) = -(p,[X] - 4r)
896

is an invariant modZ of the homotopy sphere L(p). This follows from the additivity
of the Pontrjagin class and signature under connected sum, as well as the fact that
the A-genus is an integer for closed spin manifolds (Index Theorem). It can be shown
that the number p'[X] - 4r is always a multiple of 32, hence

S= 28s = (p [X - 47)
32ger invariant mod28 of [L()].

is an integer invariant mod28 of [L(p)].



To complete the proof, we just take X to be the 4-disk bundle mentioned above.
According to [21], the signature is F1 and the Pontrjagin number is ±4(a - b)2 . I

A few comments will be helpful in the subsequent sections. The homology of Ma,b
is generated in degree 4 by the embedded 4-sphere So, = #-1(al), and the normal
bundle of this embedding is precisely the 4-dimensional real vector bundle described
above. It is not hard to show (see [21]) that the first Pontrjagin class of this bundle
is ±2(a - b) times a generator of H4 (S4 ). The presentation of the cohomology ring
for Ma,b (a + b = ±1) goes through as in Section 5.5. As a consequence of this ring
structure, it is easy to see that the Euler class of the normal bundle of this embedded
4-sphere is (a + b) = ±1 times a generator of H'(S4 ) (the Euler class corresponds to
the self intersection of the embedded 4-sphere).

REMARK. As a special case, notice that the manifold M1,0 is HP2 . The other
manifolds M,,b are, in some sense, "twisted" quaternionic projective planes.

6.2 Smooth Examples

In order to obtain a class of smooth examples we will exploit the rigidity of the
cone complex (cf. Sections 1.1, 1.2, and 3.5) and consider "liftings" of 2-dimensional
complex toric varieties.

Let M be the abelianization of the free group (E) = ({el,e 2}), and let N be the
dual Z-module Hom(M, Z). As in Section 1, we let MR and NR be the vector spaces
obtained by tensoring with R, and denote by (,) the natural pairing MR x NR --+ R.
We think of eab, eab as the standard basis for M, with dual basis e1, e2 for N.

Let E be a complete rational cone complex in NR with 1 dimensional cones

Cog C, ...1, I C77--,

numbered counterclockwise. Let ni (i E Z/(r7)) be primitive vectors in the direction
of the ray ci such that the polytope

P = n{x E MNiRI(x, ri) < 1}

is dual to E. (The existence of such elements ni E NR is the condition for a complex
projective embedding; in 2 dimensions this condition is always met.) Let mi be the
vertex of P dual to the 2 dimensional cone

R>ori-1 + R>ori

and let ai be the oriented edge [mi, mi+1] dual to ci (see Figures 6.2.1 and 6.2.2).
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Recall from Sections 1 and 3.2 that E determines a complex characteristic function
AX by mapping oi to the rank 1 sublattice R - ci n N.

Definition 6.2.1 A quaternionic characteristic function A3 " P• -- GI((E)) is a lift
of AX if for all i E Z/(q7) and all w E A3(ai), ri(wab) = 0. The associated space THA 3
will be called a lift of the toric variety X(E).

For the remainder of this section we will consider only those quaternionic spaces
which are lifts of 2-dimensional toric varieties, and which satisfy the nonsingularity
conditions of Proposition 5.4.1. In this case, for each edge aO of P, A3 (oi) has a unique
generator wi such that wýb lies on the ray R>o(mi+l -mi); the other generator (W l)ab
will lie on the opposite ray R>o(mi - mi+x). The conditions of Proposition 5.4.1
guarantee that {wi, wi+1 } is a basis for (E). We can assume (by some automorphism
of the free group) that wo = e21 and wl = ex.

Lemma 6.2.1 Let THA 3 be a lift of a 2-dimensional complex toric variety, and let
{wi} be chosen as above. Then for each i, there are unique integers ai and bi such
that

Wji-= W i Wi,

Proof. Because {wi-i,w;} is a basis for (E) we can write wi+1 as a word in
these two letters. But since {wi, wi+1 } is itself a basis, the only possibilities for this
expression are of the form

O aic l bi
i i-1 i

Our choice of generators {wj} ensures a negative power of .wi-1. I

010

MO
mo



We will construct a smooth manifold X by gluing together 77 copies of H x H along
dense open submanifolds. The construction is entirely analogous to the complex struc-
ture on a nonsingular toric variety except the transition functions are noncommutative
monomials in the coordinates.

For each i E Z/(y), let U; = H x H with quaternionic coordinates (xi, yi), and let
(ai, bi) be as in Lemma 6.2.1. We set X 1 = Ux and define Xi+1 inductively as follows:
identify the point (xi, i) E Ui C Xi (yi 6 0) with (xi+i,yi+l) E U+x1 whenever

+= y- and yi+j = y'ixjy"i. Ui+l is then an open subset of Xi+1 and we can
continue the process by gluing on Ui+2. The space X is obtained from the space X,
by the final identification of U, (= Uo) with U1 . That is, (xo, yo) E Uo is identified
with (xi,yl) E U1 whenever x1  yo 1 and yi = y 0'zoy . One checks easily that
this last identification is compatible with all previous identifications, hence X is well-
defined. Furthermore, since the quotient map to X is injective on each Ui, we may
think of the Ui's as subsets of X with coordinate maps Oi : Ui n X --+ H x H given by
p 1- (xi(p),yi(p)).

Theorem 6.2.1 The subsets Ui are coordinate charts, making X into a smooth, com-
pact, oriented manifold, homeomorphic to THA 3 .

Proof . That X is compact will follow from the homeomorphism with THA 3.
Orientability and smoothness will follow from explicit formulas for the transition
functions

0i " 0i1 : oj(Ui n Uj) --+ ;(Ui n Uj).

By symmetry (and a possible automorphism of the free group (E)), it suffices to
consider the case j = 1. For i = 2, we have

02 - (1 (X, (Y-l, a2XYb2)

which defines a diffeomorphism

, (U2 n U,) = H x H* - 2(U2 n U1) = H* x H.

Similarly, for i = 0, 0"o - 01 is the inverse of the diffeomorphism H x H* - H* x H
given by (x, y) ( (y- 1 , yalXya). For all other values of i, qi(U n U1) = 01(Ui n U1 ) =
H* x H*. If wi-l(x, y) and w;(x, y) denote the elements of H* obtained by evaluating
the words on the coordinates (x, y) E H* x H*, then

, -0. (X, y) = (Wi-I(X, y)- (, y)).

This is clearly a diffeomorphism.

To see that the transition maps are orientation preserving, it is sufficient to check
on those of the form 0,+1 .·-71 since any other is a composite of these. But all of



these are of the form (x, y) ý (y- 1, yzyb), and the determinant of the corresponding
derivative at x = y = 1 is +1.

We define the homeomorphism V : THA 3 -+ X by first constructing a surjective
map T : P x S3 x S'3 - X, and showing that the induced equivalence relation on
P x S3 x S3 is precisely the defining relation for T•A3. To define T we make use of
the underlying cone complex E.

Lemma 6.2.2 X is the union of the retracted subsets

Ui = {p E XI 11xi(p)ll 5 1, Ilyi(p)ll < 1}.

Proof . By symmetry it is enough to show that every point of U1 is contained in
at least one of the Ui's. Fix p E U1 and let (xi, yi) = Oi(p) whenever this makes sense.
If x, = 0, then using the formula for the transition function q2 q j1- (given above) we
see that either Ilyll < 1 in which case p E U1 or 11x 211 5 1 and y2 = 0 in which case
p E U2 . A similar argument shows that in case yl = 0, p must be contained in either
U1 or U,-l.

We can now assume 11ixll > 0 and Il|yiI > 0. Having fixed the standard basis e1, E2
for NR, we consider the covector n = -(log Ixi111)E1 - (log IlyII)eC2 in NR. Let ci be a
cone of E which contains the covector n. Recall from the definitions of Section 1.1
and Definition 6.2.1 that the dual cone 6i is spanned by the vectors -wý'_6 and wOb,
which we write as rxeb + r 2eab and sleeb + s2 e b. From the definition of the dual cone
it follows that the covector n must be nonnegative when evaluated on these spanning
vectors, giving the inequalities

r i log I||xl1 + r2 log Ily•, < 0

and
sl log IJ, 11 + S2 log Ily II < 0.

But exponentiating these inequalities and using the formula for (xi, yi) in terms of
(xl, Y) given by the appropriate transition function, we have

114 111 = IIw.1 1(x, y' )1 = lix rII' y IJv _< 1

and

I1y,11 = IIw,(Xl,yl)ll = IzX111'11 y11 '•2 < 1 .

It follows that p is in Ui. I

Subdivide P into r7 quadrilaterals by joining a fixed interior point to the midpoint
of each edge. Let oi be the quadrilateral containing the vertex mi, as in Figure 6.2.3.



Define homeomorphisms ii : i [(0, 1] x [0, 1] which preserve faces, map mi to
(0, 0), and satisfy the overlap compatibility condition

Oi+1O1 (x, 1) = (1, x)

for all i E Z/(r) and x E [0, 1]. In other words, P is homeomorphic to the space
obtained by gluing I copies of [0, 11 x [0, 11 together by the maps 4'j-ik along the
faces {1} x [0, 1] and [0, 1] x {1}.
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Let ir1, 72 : [0, 1] x [0, 1] -, [0, 1] be the respective coordinate projections. For each
i and (q, x, y) E 0i x S3 x S3, define

'(q, x, y) = 0''(-(y 7 i(q)w-1\(X, y), 720i(q)wi(x, y)).

I' maps O, x S3 x S3 onto the subset Ui and for q E o; n0oj, the corresponding images
of IV coincide. Hence, these maps patch together, giving a continuous surjection

S: P x S3 x S3 _ X.

Finally, one checks that the equivalence relation given by identifying the fibers of
9 is the same as the defining relation (Definition 5.2.2) for THA 3 , giving a continuous
bijection k : THA 3 3 X. It follows from Lemma 6.2.2 and the explicit transition
functions that X is Hausdorff. Since THA 3 is compact, 0 is a homeomorphism. I

6.3 Characteristic Numbers

In this section, we work toward a topological classification of the smooth examples
defined in Section 6.2. The combinatorial structure of these manifolds allows one to
give straightforward expressions for various characteristic classes and other topological
invariants. The two fundamental invariants we work with are the first Pontrjagin
class and the intersection form. According to Wall [31], the topological type of a



3-connected 8-manifold is determined by these two invariants. As a result of the
cohomology calculation Theorem 5.5.1, we know that our smooth examples are 3-
connected, so following Wall's program, we compute these invariants explicitly.

As in the previous section, we let A3 be a characteristic function on the r-gon P
satisfying the nonsingularity conditions of Proposition 5.4.1 and let X = THA 3 be the
associated quaternionic space. In addition, we assume X is a lift of a toric variety,
hence has the smooth structure defined in Theorem 6.2.1. According to Lemma 6.2.1,
A3 is completely determined by a sequence of integral pairs (ao, bo),..., (a,- 1, b~.-),
and it is clear from the the last section that the smooth structure depends solely on
this sequence. We will call such a sequence of pairs admissible if it arises (via Lemma
6.2.1) from a characteristic function for some smooth example X.

Let Di = Sj, for i E Z/(7) so that D*, Dl,..., D_ 1 (the Poincar6 dual cohomology
classes of Section 5.5) generate the ring H*(X). It is clear from the last section that
the cycle Di is an embedded 4-sphere. Let vi be the normal bundle of the embedding
with first Pontrjagin number ,i = pl(vi)[Di].

Lemma 6.3.1 The cochain given by : Di - (i is a cocycle and is a representative
for the Pontrjagin class p,(X).

Proof . The normal bundle of Di is represented by an element T of 7r3(SO 4), and
according to [31, p. 165j the rule Di - V induces a map H4(X) - 7r3(SO 4) (which
Wall denotes by a). Composing with the stable map S : r3(S0 4) -+ r 3(SO) - Z
thus defines a cohomology class Sa in H4 (X) which is 1/2 the first Pontrjagin class
([31, p. 179]). Because the image of - in 7r3(SO 4) is precisely ýij (see, eg., [301), we
have

1 1-v= So= -pi(X)2 2
as desired. I

To determine p1(X) explicitly, then, we need to determine the numbers ji. Ac-
cording to Section 6.2, a smooth neighborhood of the embedded 4-sphere Di is given
by identifying the subset H x H* of Ui with H* x H of Ui+1 by the diffeomorphism

As in Section 6.1, this defines a 4-dimensional real vector bundle over Di which is
precisely the normal bundle of Di in X. The Pontrjagin class can be computed as
in [21] by noting that the associated sphere bundle has clutching function y 4 (xa
ya'xybi), defining an element of r3(SO4) ý Z e Z. The Pontrjagin class is known to
be +2 times the image of this element in the stable group 7r3(SO) ' Z. Using, for
example, [30, pages 115-117] this number can then be determined explicitly

(i = 2(ai - bi).



The intersection form H4 (X) 0 H 4(X) - Ho(X) = Z can be computed by using
the explicit description of the intersection ring in Theorem 5.5.1. If Di and Dj are
consecutive, they intersect in a point. By choosing appropriate orientations, we have
Di n Dj = 1. If Di and Dj (i # j) are not consecutive, they do not intersect, hence
Di n Dj = 0. To compute the self intersection of Di, the linear relations among the
cycles can be used to push Di away from itself. This can be done in such a way that
the coefficients of Di+1 , Di, and Di-1 in the resulting cycle are -(ai + bi), 0, and 0,
respectively. Intersecting with Di then gives -(ai + bi). In short,

1 if i -j = ±1 mod 77
Di n Dj = xi if i = j mod r

0 otherwise

where Xi = -(ai + bi). Note that Xi is the Euler number obtained by evaluating the
Euler class of vi on the generator [Di] E H4 (Di).

We will now compute some of the relations among the integers ai and bi for
an admissible sequence (ao, bo), (ax, bi),..., (a,-1, b,-1). We focus on those relations
arising from well known geometric formulas involving certain characteristic numbers
for smooth manifolds. The numbers are the signature, the first and second Pontrjagin
numbers, and the A-genus, which for a given manifold X, we denote by r(X), p'[X]
and p2 [X], and A(X), respectively. The first formula we recall is the signature theorem
of Hirzebruch:

r(X) = 4(7p2[XJ - pi[X]), (1)

and the second is the definition of A(X):

A 11
A(X) = (7p2[X] - 4p 2 [X]). (2)
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Since in our case, X is 3-connected, it admits a unique spin structure (see [22], eg.);
hence A(X), as the index of a certain elliptic operator, is an integer (see, eg., [12]).
In fact, for our examples we can say more.

Lemma 6.3.2 Let X be one of the smooth 2-dimensional quaternionic spaces of Sec-
tion 6.2. Then A(X) = 0.

Proof . A smooth manifold admits a spin structure provided the second Stieffel-
Whitney class vanishes, hence X is spin. A well-known fact about spin manifolds

(see, eg., [16]) is that the A genus vanishes if the manifold admits an S'-action. One
checks easily that the SO(3)-action on X (defined in Section 5.2) is smooth. Since
the subgroup SO(2) = S' also acts smoothly, A(X) = 0. I



According to (2), then, we have

P2[X] = pi[X],

and substituting into (1) gives

r(X) = 1p [X]. (3)

All of the above numbers, then, can be written in terms of the single number p2[X],
which we now compute explicitly in terms of the (i and Xi defined above. According
to Lemma 6.3.1, the Pontrjagin cohomology class ( = pl is given by Di ý ~; for
i E Z/(77). To square this class, we use the nondegenerate intersection form to obtain
the Poincard dual class x in H4(X). Then ((x) = x n x E Z is precisely the number
p2 [X]. For any representative cycle

77-1

E -i • Di
i=0

for the homology class x, intersecting with Dj must give the same result as evaluating
on Dj. Thus for any j E Z/(77), we have

ýj = yj-1 + Xjm"j + /j+l. (4)

Similarly, evaluating ý on this representative cycle gives

p: [X] = ((x) = (5)

Since any 7 - 1 consecutive Di's form a basis for H4 (X), we can take y70 = T = 0.
The remaining coefficients are then determined inductively by (4)

72 = 1 - X171 - 70 = 1
73 = 62 - X272 - 71 = 2 6- X2'1

7i+1 = 'i - Xi7i - 7i-1

•'-1 = ri-2 - Xn-27r-2 - 7n-3

Substituting into (5) then gives the desired formula.

On the other hand, since X is the lift of a toric variety associated to some fan E,
it has the same cohomology ring (up to a shift in degree) as the toric variety X(E).
Hence, X has the same intersection form (and signature) as the complex toric variety
associated with the 77-gon P. (Incidentally, this toric variety embeds as a submanifold



of X by restricting each the coordinate charts of Section 6.2 to C x C C H x H.)
Moreover, the numbers Xi = -(ai + bi) are the self intersection numbers of the
generating 2-cycles (Theorem 3.3.2) for the toric variety. P. Melvin, in [20, Theorem
1], gives a formula for the signature in terms of this sequence Xl X, , ... , X, of Euler
numbers. Because of the cyclic symmetry, one would hope for a symmetric expression,
and indeed

S(X) = 13 Xi. (6)

This formula holds for the signature of any 2-dimensional nonsingular complex toric
space; in the case of a toric variety, the rigidity of the cone complex gives, as in [8],
the much simpler formula

7(X) = 4 - 7. (7)

Theorem 6.3.1 Let (ai, b2), i E Z/(77) be an admissible sequence of integral pairs,
and let (i = 2(ai - b;) and XI = -(ai + bi). Then

4 - = •EXi.

In addition, if 7i, i E Z/(y), is any sequence satisfying (4), then

Proof . The first equation follows from (6) and (7), the second from (3) and (7).
I
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