383 research outputs found

    Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    Get PDF
    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase

    Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model

    Get PDF
    BACKGROUND: Pendred syndrome, a common autosomal-recessive disorder characterized by congenital deafness and goiter, is caused by mutations of SLC26A4, which codes for pendrin. We investigated the relationship between pendrin and deafness using mice that have (Slc26a4(+/+)) or lack a complete Slc26a4 gene (Slc26a4(-/-)). METHODS: Expression of pendrin and other proteins was determined by confocal immunocytochemistry. Expression of mRNA was determined by quantitative RT-PCR. The endocochlear potential and the endolymphatic K(+ )concentration were measured with double-barreled microelectrodes. Currents generated by the stria marginal cells were recorded with a vibrating probe. Tissue masses were evaluated by morphometric distance measurements and pigmentation was quantified by densitometry. RESULTS: Pendrin was found in the cochlea in apical membranes of spiral prominence cells and spindle-shaped cells of stria vascularis, in outer sulcus and root cells. Endolymph volume in Slc26a4(-/- )mice was increased and tissue masses in areas normally occupied by type I and II fibrocytes were reduced. Slc26a4(-/- )mice lacked the endocochlear potential, which is generated across the basal cell barrier by the K(+ )channel KCNJ10 localized in intermediate cells. Stria vascularis was hyperpigmented, suggesting unalleviated free radical damage. The basal cell barrier appeared intact; intermediate cells and KCNJ10 mRNA were present but KCNJ10 protein was absent. Endolymphatic K(+ )concentrations were normal and membrane proteins necessary for K(+ )secretion were present, including the K(+ )channel KCNQ1 and KCNE1, Na(+)/2Cl(-)/K(+ )cotransporter SLC12A2 and the gap junction GJB2. CONCLUSIONS: These observations demonstrate that pendrin dysfunction leads to a loss of KCNJ10 protein expression and a loss of the endocochlear potential, which may be the direct cause of deafness in Pendred syndrome

    Low serum albumin and the acute phase response predict low serum selenium in HIV-1 infected women

    Get PDF
    BACKGROUND: Low serum selenium has been associated with lower CD4 counts and greater mortality among HIV-1-seropositive individuals, but most studies have not controlled for serum albumin and the presence of an acute phase response. METHODS: A cross-sectional study was conducted to evaluate relationships between serum selenium concentrations and CD4 count, plasma viral load, serum albumin, and acute phase response markers among 400 HIV-1-seropositive women. RESULTS: In univariate analyses, lower CD4 count, higher plasma viral load, lower albumin, and the presence of an acute phase response were each significantly associated with lower serum selenium concentrations. In multivariate analyses including all four of these covariates, only albumin remained significantly associated with serum selenium. For each 0.1 g/dl increase in serum albumin, serum selenium increased by 0.8 μg/l (p < 0.001). Women with an acute phase response also had lower serum selenium (by 5.6 μg/l, p = 0.06). CONCLUSION: Serum selenium was independently associated with serum albumin, but not with CD4 count or plasma viral load, in HIV-1-seropositive women. Our findings suggest that associations between lower serum selenium, lower CD4 count, and higher plasma viral load may be related to the frequent occurrence of low serum albumin and the acute phase response among individuals with more advanced HIV-1 infection

    Quantification of collagen and proteoglycan deposition in a murine model of airway remodelling

    Get PDF
    BACKGROUND: Sub-epithelial extracellular matrix deposition is a feature of asthmatic airway remodelling associated with severity of disease, decline in lung function and airway hyperresponsiveness. The composition of, and mechanisms leading to, this increase in subepithelial matrix, and its importance in the pathogenesis of asthma are unclear. This is partly due to limitations of the current models and techniques to assess airway remodelling. METHODS: In this study we used a modified murine model of ovalbumin sensitisation and challenge to reproduce features of airway remodelling, including a sustained increase in sub-epithelial matrix deposition. In addition, we have established techniques to accurately and specifically measure changes in sub-epithelial matrix deposition, using histochemical and immunohistochemical staining in conjunction with digital image analysis, and applied these to the measurement of collagen and proteoglycans. RESULTS: 24 hours after final ovalbumin challenge, changes similar to those associated with acute asthma were observed, including inflammatory cell infiltration, epithelial cell shedding and goblet cell hyperplasia. Effects were restricted to the bronchial and peribronchial regions with parenchymal lung of ovalbumin sensitised and challenged mice appearing histologically normal. By 12 days, the acute inflammatory changes had largely resolved and increased sub-epithelial staining for collagen and proteoglycans was observed. Quantitative digital image analysis confirmed the increased deposition of sub-epithelial collagen (33%, p < 0.01) and proteoglycans (32%, p < 0.05), including decorin (66%, p < 0.01). In addition, the increase in sub-epithelial collagen deposition was maintained for at least 28 days (48%, p < 0.001). CONCLUSION: This animal model reproduces many of the features of airway remodelling found in asthma and allows accurate and reproducible measurement of sub-epithelial extra-cellular matrix deposition. As far as we are aware, this is the first demonstration of increased sub-epithelial proteoglycan deposition in an animal model of airway remodelling. This model will be useful for measurement of other matrix components, as well as for assessment of the molecular mechanisms contributing to, and agents to modulate airway remodelling

    Testing for an effect of a mindfulness induction on child executive functions

    Get PDF
    Several sessions of mindfulness practice can exert positive gains for child executive functions (EF); however, the evidence for effects of a mindfulness induction, on EF for adults, is mixed and this effect has not been tested in children. The immediate effect of an age appropriate 3-min mindfulness induction on EF of children aged 4–7 years was tested. Participants (N = 156) were randomly assigned to a mindfulness induction or dot-to-dot activity comparison group before completing four measures of EF. A composite score for EF was calculated from summed z scores of the four EF measures. A difference at baseline in behavioural difficulties between the mindfulness induction and comparison group meant that data was analysed using a hierarchical regression. The mindfulness induction resulted in higher average performance for the composite EF score (M = 0.12) compared to the comparison group (M = − 0.05). Behavioural difficulties significantly predicted 5.3% of the variance in EF performance but participation in the mindfulness or comparison induction did not significantly affect EF. The non-significant effect of a mindfulness induction to exert immediate effects on EF fits within broader evidence reporting mixed effects when similar experimental designs have been used with adults. The findings are discussed with consideration of the extent to which methodological differences may account for these mixed effects and how mindfulness inductions fit within broader theoretical and empirical understanding of the effects of mindfulness on EF

    Evaluation of cell-free DNA approaches for multi-cancer early detection

    Get PDF
    In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test

    Search for the standard model Higgs boson at LEP

    Get PDF
    • …
    corecore