46 research outputs found

    Current concepts: Neonatal brachial plexus pals

    Get PDF
    Neonatal brachial plexus palsy may be decreasing in incidence; however, conflicting reports exist. Regardless, neonatal brachial plexus palsy has an incidence of 1 to 2 per 1000 live births making this a frequent occurrence. The majority of infants with brachial plexus palsy spontaneously recover in the first 2 months of life and subsequently progress to near complete recovery of motion and strength. However, those infants who do not have substantial recovery by age 3 months will have permanent limited range of motion, less strength, and a decrease in size and girth of the involved extremity. Currently, debate continues about the timing and type of surgical intervention. This article provides an update based on recent literature regarding the anatomy, epidemiology, diagnosis, classification schemes, and treatment options for neonatal brachial plexus palsy

    Pollicization: The Concept, Technical Details, and Outcome

    Get PDF
    Pollicization substitutes a functioning finger for a deficient thumb. The most indication is thumb hypoplasia with absence or instability of the carpometacarpal joint. However, there are additional causes that may negate thumb function, such as trauma, macrodactyly, multi-fingered hand, and a mirror hand. The technique of pollicization represents a consolidation of contributions from surgeons over the last 100 years. A meticulous stepwise approach from incision to closure is necessary to optimize outcome. Following pollicization, cortical plasticity and motor relearning play a pivotal role in function following pollicization with connections and adjacent sprouting from nearby cortical and/or subcortical territories. Occupational therapy is necessary to encourage large object acquisition followed by smaller objects and ultimately fine pinch. Pollicization is more reliable in patients with isolated thumb hypoplasia and a mobile index finger with robust extrinsic and intrinsic muscle-tendon units compared to and patients with radial forearm deficiencies and diminished index mobility

    Computerized Adaptive Tests Detect Change Following Orthopaedic Surgery in Youth with Cerebral Palsy.

    Get PDF
    BACKGROUND: The Cerebral Palsy Computerized Adaptive Test (CP-CAT) is a parent-reported outcomes instrument for measuring lower and upper-extremity function, activity, and global health across impairment levels and a broad age range of children with cerebral palsy (CP). This study was performed to examine whether the Lower Extremity/Mobility (LE) CP-CAT detects change in mobility following orthopaedic surgery in children with CP. METHODS: This multicenter, longitudinal study involved administration of the LE CP-CAT, the Pediatric Outcomes Data Collection Instrument (PODCI) Transfer/Mobility and Sports/Physical Functioning domains, and the Timed Up & Go test (TUG) before and after elective orthopaedic surgery in a convenience sample of 255 children, four to twenty years of age, who had CP and a Gross Motor Function Classification System (GMFCS) level of I, II, or III. Standardized response means (SRMs) and 95% confidence intervals (CIs) were calculated for all measures at six, twelve, and twenty-four months following surgery. RESULTS: SRM estimates for the LE CP-CAT were significantly greater than the SRM estimates for the PODCI Transfer/Mobility domain at twelve months, the PODCI Sports/Physical Functioning domain at twelve months, and the TUG at twelve and twenty-four months. When the results for the children at GMFCS levels I, II, and III were grouped together, the improvements in function detected by the LE CP-CAT at twelve and twenty-four months were found to be greater than the changes detected by the PODCI Transfer/Mobility and Sports/Physical Functioning scales. The LE CP-CAT outperformed the PODCI scales for GMFCS levels I and III at both of these follow-up intervals; none of the scales performed well for patients with GMFCS level II. CONCLUSIONS: The results of this study showed that the LE CP-CAT displayed superior sensitivity to change than the PODCI and TUG scales after musculoskeletal surgery in children with CP

    Expression of NF-ΞΊB p50 in Tumor Stroma Limits the Control of Tumors by Radiation Therapy

    Get PDF
    Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by transcriptional regulation by NFΞΊB p50, and that in mice lacking NFΞΊB p50, radiation therapy is more effective. We propose that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair following radiation therapy may limit the ability to control residual disease

    Characterization of Multi-Functional Properties and Conformational Analysis of MutS2 from Thermotoga maritima MSB8

    Get PDF
    The MutS2 homologues have received attention because of their unusual activities that differ from those of MutS. In this work, we report on the functional characteristics and conformational diversities of Thermotoga maritima MutS2 (TmMutS2). Various biochemical features of the protein were demonstrated via diverse techniques such as scanning probe microscopy (SPM), ATPase assays, analytical ultracentrifugation, DNA binding assays, size chromatography, and limited proteolytic analysis. Dimeric TmMutS2 showed the temperature-dependent ATPase activity. The non-specific nicking endonuclease activities of TmMutS2 were inactivated in the presence of nonhydrolytic ATP (ADPnP) and enhanced by the addition of TmMutL. In addition, TmMutS2 suppressed the TmRecA-mediated DNA strand exchange reaction in a TmMutL-dependent manner. We also demonstrated that small-angle X-ray scattering (SAXS) analysis of dimeric TmMutS2 exhibited nucleotide- and DNA-dependent conformational transitions. Particularly, TmMutS2-ADPnP showed the most compressed form rather than apo-TmMutS2 and the TmMutS2-ADP complex, in accordance with the results of biochemical assays. In the case of the DNA-binding complexes, the stretched conformation appeared in the TmMutS2-four-way junction (FWJ)-DNA complex. Convergences of biochemical- and SAXS analysis provided abundant information for TmMutS2 and clarified ambiguous experimental results

    Global Hand Surgery

    No full text

    Outcome Measures

    Full text link

    Cell Signaling Regulation of Vertebrate Limb Growth and Patterning

    No full text

    Outcome Measures

    Full text link
    corecore