550 research outputs found

    Journal Impact Factor

    Get PDF
    In a recent issue of Human Communication Research, Thomas Hugh Feeley notes, “journal impact rankings provide objective data for tenure, promotion, and, possibly, grant review committees on the quality of scholars’ work.” Though the metric is widely regarded as the conventional measure to assess the influence of a journal in both the social and physical sciences, many doubts regarding its effectiveness have been raised. This essay assesses the effectiveness of the Journal Impact Factor (JIF) as a scholarly metric. After first considering the metric\u27s history and developing a working definition of JIF (part one), next I delineate its strengths and weaknesses as a measurement tool of assessing journal prominence (part two). Then in part three, I argue that the amount of credence placed upon the metric by tenure and promotion committees needs to be critically examined, because these decisions are often based on the flawed and biased data provided by the JIF. The closing section addresses the appropriateness of the JIF for evaluating scholarship in the field of Communication

    Journal Impact Factor

    Get PDF
    In a recent issue of Human Communication Research, Thomas Hugh Feeley notes, “journal impact rankings provide objective data for tenure, promotion, and, possibly, grant review committees on the quality of scholars’ work.” Though the metric is widely regarded as the conventional measure to assess the influence of a journal in both the social and physical sciences, many doubts regarding its effectiveness have been raised. This essay assesses the effectiveness of the Journal Impact Factor (JIF) as a scholarly metric. After first considering the metric\u27s history and developing a working definition of JIF (part one), next I delineate its strengths and weaknesses as a measurement tool of assessing journal prominence (part two). Then in part three, I argue that the amount of credence placed upon the metric by tenure and promotion committees needs to be critically examined, because these decisions are often based on the flawed and biased data provided by the JIF. The closing section addresses the appropriateness of the JIF for evaluating scholarship in the field of Communication

    Habitat and Weather Effects on Northern Bobwhite Brood Movements

    Get PDF
    We observed radio-marked northern bobwhite (Colinus virginianus) broods (adults with chicks :S21 days old; n = 12) in Kansas during 1991-94 to test effects of weather (temperature and precipitation) and macrohabitat (composition, relative diversity, and mean distance to grassland) variables on brood home range size and daily movements at large (28.5 km2), intermediate (3.14 km2), and small (about 0.14 km2) spatial scales surrounding habitats available for broods. Principal component analyses followed by stepwise multiple linear regression indicated neither weather nor habitat influenced (P 2: 0.1) home range size at the large and intermediate scales. However, the principal component representing mean distance to grassland and percent cropland within the home range (i.e., at a small scale) was positively related to home range size. Neither temperature nor habitat influenced daily distance of movements. We concluded that brood mobility was independent of landscape-scale features, but that habitat management at smaller spatial scales could influence movements. To create optimal habitat for bobwhite, managers should consider relationships among habitat attributes and the movement of individuals, including the spatial scales at which these relationships are most important

    Modal satisfiability via SMT solving

    Get PDF
    Modal logics extend classical propositional logic, and they are robustly decidable. Whereas most existing decision procedures for modal logics are based on tableau constructions, we propose a framework for obtaining decision procedures by adding instantiation rules to standard SAT and SMT solvers. Soundness, completeness, and termination of the procedures can be proved in a uniform and elementary way for the basic modal logic and some extensions.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fontaine, Pascal. Université de Lorraine; Francia.Fil: Fontaine, Pascal. National Institute for Research in Digital Science and Technology; Francia.Fil: Merz, Stephan. Université de Lorraine; Francia.Fil: Merz, Stephan. National Institute for Research in Digital Science and Technology; Francia.Ciencias de la Computació

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data retrieval systems and computational resources for the analysis of data in GenBank and other biological data made available through NCBI's website. NCBI resources include Entrez, Entrez Programming Utilities, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD) and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov

    Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    Get PDF
    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states
    • …
    corecore