280 research outputs found
Abnormal pulse wave velocity in bicuspid aortic valve: comparison to trileaflet aortic valve and the impact of aortic regurgitation
Impact of right ventricular end systolic volume and mitral regurgitation on survival in patients with severe ischemic cardiomyopathy
MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial
Aims To determine in a multicentre, multivendor trial the diagnostic performance for perfusion-cardiac magnetic resonance (perfusion-CMR) in comparison with coronary X-ray angiography (CXA) and single-photon emission computed tomography (SPECT). Methods and results Of 241 eligible patients from 18 centres, 234 were randomly dosed with 0.01, 0.025, 0.05, 0.075, or 0.1 mmol/kg Gd-DTPA-BMA (Omniscan™, GE-Healthcare) per stress (0.42 mg/kg adenosine) and rest perfusion study. Coronary artery disease (CAD) was defined as diameter stenosis ≥50% on quantitative CXA. Five CMR and eight SPECT studies (of 225 complete studies) were excluded from analyses due to inadequate quality (three blinded readers scored per modality). The comparison of CMR vs. SPECT was based on receiver operating characteristic (ROC) analysis. Perfusion-CMR at the optimal CM dose (0.1 mmol/kg) had similar performance as SPECT, if only the SPECT studies of the 42 patients with this dose were considered [area under ROC curve (AUC): 0.86 ± 0.06 vs. 0.75 ± 0.09 for SPECT, P = 0.12]; however, diagnostic performance of perfusion-CMR was better vs. the entire SPECT population (AUC: 0.67 ± 0.05, n = 212, P = 0.013). Conclusions In this multicentre, multivendor trial, ROC analyses suggest perfusion-CMR as a valuable alternative to SPECT for CAD detection showing equal performance in the head-to-head comparison. Comparing perfusion-CMR with the entire SPECT population suggests CMR superiority over SPECT, which warrants further evaluation in larger trial
Cardiac Magnetic Resonance Imaging for the Investigation of Cardiovascular Disorders. Part 1: Current Applications
Cardiac magnetic resonance imaging is a robust noninvasive technique for investigating cardiovascular disorders. The evolution of cardiac magnetic resonance and its widening span of diagnostic and prognostic applications have generated excitement as well as uncertainty regarding its potential clinical use and its role vis-à-vis conventional imaging techniques. The purpose of this evidence-based review is to discuss some of these issues by highlighting the current (Part 1) and emerging (Part 2) applications of cardiac magnetic resonance. Familiarity with the versatility and usefulness of cardiac magnetic resonance will facilitate its wider clinical acceptance for improving the management of cardiovascular disorders
End systolic volume and scar burden are incremental and independent predictors of survival in patients with severe ischemic cardiomyopathy
Right ventricular volumes vs. right ventricular ejection fraction are more powerful independent predictors of survival in patients with severe ischemic cardiomyopathy
Cardiac Magnetic Resonance Imaging for the Investigation of Cardiovascular Disorders. Part 2: Emerging Applications
Cardiac magnetic resonance imaging has emerged as a robust noninvasive technique for the investigation of cardiovascular disorders. The coming-of-age of cardiac magnetic resonance—and especially its widening span of applications—has generated both excitement and uncertainty in regard to its potential clinical use and its role vis-à-vis conventional imaging techniques. The purpose of this evidence-based review is to discuss some of these issues by highlighting the current (Part 1, previously published) and emerging (Part 2) applications of cardiac magnetic resonance. Familiarity with the versatile uses of cardiac magnetic resonance will facilitate its wider clinical acceptance for improving the management of patients with cardiovascular disorders
The global cardiovascular magnetic resonance registry (GCMR) of the society for cardiovascular magnetic resonance (SCMR): its goals, rationale, data infrastructure, and current developments
BACKGROUND: With multifaceted imaging capabilities, cardiovascular magnetic resonance (CMR) is playing a progressively increasing role in the management of various cardiac conditions. A global registry that harmonizes data from international centers, with participation policies that aim to be open and inclusive of all CMR programs, can support future evidence-based growth in CMR. METHODS: The Global CMR Registry (GCMR) was established in 2013 under the auspices of the Society for Cardiovascular Magnetic Resonance (SCMR). The GCMR team has developed a web-based data infrastructure, data use policy and participation agreement, data-harmonizing methods, and site-training tools based on results from an international survey of CMR programs. RESULTS: At present, 17 CMR programs have established a legal agreement to participate in GCMR, amongst them 10 have contributed CMR data, totaling 62,456 studies. There is currently a predominance of CMR centers with more than 10 years of experience (65%), and the majority are located in the United States (63%). The most common clinical indications for CMR have included assessment of cardiomyopathy (21%), myocardial viability (16%), stress CMR perfusion for chest pain syndromes (16%), and evaluation of etiology of arrhythmias or planning of electrophysiological studies (15%) with assessment of cardiomyopathy representing the most rapidly growing indication in the past decade. Most CMR studies involved the use of gadolinium-based contrast media (95%). CONCLUSION: We present the goals, mission and vision, infrastructure, preliminary results, and challenges of the GCMR. TRIAL REGISTRATION: Identification number on ClinicalTrials.gov: NCT02806193. Registered 17 June 2016
- …
