97 research outputs found
Pulmonary Biomarkers Based on Alterations in Protein Expression after Exposure to Arsenic
OBJECTIVE: Environmental exposure to arsenic results in multiple adverse effects in the lung. Our objective was to identify potential pulmonary protein biomarkers in the lung-lining fluid of mice chronically exposed to low-dose As and to validate these protein changes in human populations exposed to As. METHODS: Mice were administered 10 or 50 ppb As (sodium arsenite) in their drinking water for 4 weeks. Proteins in the lung-lining fluid were identified using two-dimensional gel electrophoresis (n = 3) or multidimensional protein identification technology (MUDPIT) (n = 2) coupled with mass spectrometry. Lung-induced sputum samples were collected from 57 individuals (tap water As ranged from ~ 5 to 20 ppb). Protein levels in sputum were determined by ELISA, and As species were analyzed in first morning void urine. RESULTS: Proteins in mouse lung-lining fluid whose expression was consistently altered by As included glutathione-S-transferase (GST)-omega-1, contraspin, apolipoprotein A-I and A-IV, enolase-1, peroxiredoxin-6, and receptor for advanced glycation end products (RAGE). Validation of the putative biomarkers was carried out by evaluating As-induced alterations in RAGE in humans. Regression analysis demonstrated a significant negative correlation (p = 0.016) between sputum levels of RAGE and total urinary inorganic As, similar to results seen in our animal model. CONCLUSION: Combinations of proteomic analyses of animal models followed by specific analysis of human samples provide an unbiased determination of important, previously unidentified putative biomarkers that may be related to human disease
Complete Genome Sequence of Curtobacterium sp. Strain MR_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts
Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA
Complete Genome Sequence of Streptomyces sp. Strain CCM_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts
Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences
The MNK - eIF4E signaling axis contributes to injury-induced nociceptive plasticity and the development of chronic pain
Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4E(S209A)). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF-and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2(-/-) mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2 (-/-) mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.National Institutes of Health [R01-NS-065926, R01-GM-102575, R01-NS-073664]; University of Texas STARS program; postdoctoral Consejo Nacional de Ciencia y Tecnologia fellowship program [274414]6 month embargo; published: 2 August 2017.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Determining crystal structures through crowdsourcing and coursework
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality
Connexin mimetic peptides reversibly inhibit Ca2+ signaling through gap junctions in airway cells
The effect of peptides with sequences derived from connexins, the constituent proteins of gap junctions, on mechanically stimulated intercellular Ca(2+) signaling in tracheal airway epithelial cells was studied. Three peptides with sequences corresponding to connexin extracellular loop regions reversibly restricted propagation of Ca(2+) waves to neighboring cells. Recovery of communication began within 10 min of removal of the peptides, with inhibition totally reversed by 20-40 min. The peptides were shown to be more effective in inhibiting Ca(2+) waves than glycyrrhetinic acid or oleamide. Inhibition of intercellular Ca(2+) waves by connexin mimetic peptides did not affect the Ca(2+) response to extracellular ATP. Although the intracellular Ca(2+) response of tracheal epithelial cells to ATP was greatly reduced by either pretreatment with high doses of ATP or application of apyrase, mechanically stimulated intercellular Ca(2+) signaling was not affected by these agents. We conclude that connexin mimetic peptides are effective and reversible inhibitors of gap junctional communication of physiologically significant molecules that underlie Ca(2+) wave propagation in tracheal epithelial cells and propose a potential mechanism for the mode of action of mimetic peptides
- …