960 research outputs found

    An architecture for efficient gravitational wave parameter estimation with multimodal linear surrogate models

    Get PDF
    The recent direct observation of gravitational waves has further emphasized the desire for fast, low-cost, and accurate methods to infer the parameters of gravitational wave sources. Due to expense in waveform generation and data handling, the cost of evaluating the likelihood function limits the computational performance of these calculations. Building on recently developed surrogate models and a novel parameter estimation pipeline, we show how to quickly generate the likelihood function as an analytic, closed-form expression. Using a straightforward variant of a production-scale parameter estimation code, we demonstrate our method using surrogate models of effective-one-body and numerical relativity waveforms. Our study is the first time these models have been used for parameter estimation and one of the first ever parameter estimation calculations with multi-modal numerical relativity waveforms, which include all l <= 4 modes. Our grid-free method enables rapid parameter estimation for any waveform with a suitable reduced-order model. The methods described in this paper may also find use in other data analysis studies, such as vetting coincident events or the computation of the coalescing-compact-binary detection statistic.Comment: 10 pages, 3 figures, and 1 tabl

    Interview with Mr. Ernie Brown

    Get PDF
    Transcript of an interview with Mr. Ernie Brown. For ACES 803 Educational Research, Dr. Allan Millerhttps://scholars.fhsu.edu/ors/1234/thumbnail.jp

    Alternative Dispute Resolution in Commercial Intellectual Property Disputes

    Get PDF

    Park Forest African American Pioneers: When and How We Entered, 1958-1968

    Get PDF
    The information contained in this presentation are copies of original documents and is based on information obtained from historical files of the Village of Park Forest, documents in the Park Forest [Public] Library and private citizens. This packet was produced with the help of Park Forest Historical Society Archivist Jane Nicoll in preparation for a program in February 1999 as a part of the 50th Anniversary of Park Forest. The original copy is located at the Park Forest Public Library, Park Forest Illinois, Ref 977.31 SCO Local History. Contents of Park Forest African American Pioneers, When and How we Entered 1958-1968 are: 1. Negroes in Residence in Park Forest as of January 1, 1969-By Street. This includes the date these families moved in (p. 4) 2. Policy on Minority Group Residence Adopted September 25, 1959. [which was unanimously adopted by the Commission on Human Relations at its September 1959 meeting.] (p. 13) 3. First Park Forest African American Co-op Residents, List from (Feb. 1964-1968). Includes some memos to Human Relations Commission. (p. 20) 4. (Section cover labeled: Federal Laws Affecting Housing) Fair Housing Ordinance, Village of Park Forest (Illinois), approved 1-29-1968. References 1963 Executive Order to affirmatively market VA and FHA Foreclosures, and 1964 Civil Rights Act. (p. 29) 5. Hello Dr. Wilson: Integration Comes to Park Forest. (December, 1959) (p. 33) 6. First Park Forest African-American Homeowners. A retyped list of the Negroes in Residence list. Includes memos and letters between Human Relation Commission Members, as a sample of what information was shared about new African American residents. (p. 38) 7. Human Relations Commission 1953. Includes a letter from John L. Scott, Village Manager about an incident in July 1959 when there was a rumored home sale to a Negro and memos from John Scott, Village Manager and Robert A. Dinerstein on how Village Employees should respond to the first Negro resident, which followed that incident later in July 1959. (p. 50) 8. William Simpson, Pioneer Resident and Community Activist. Mr. Simpson for years objected to and protested Integration Maintenance. (p. 58

    Fast and accurate prediction of numerical relativity waveforms from binary black hole coalescences using surrogate models

    Get PDF
    Simulating a binary black hole (BBH) coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from non-spinning BBH coalescences with mass ratios in [1,10][1, 10] and durations corresponding to about 1515 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms {\em not} used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic −2Yℓm{}_{-2}Y_{\ell m} waveform modes resolved by the NR code up to ℓ=8.\ell=8. We compare our surrogate model to Effective One Body waveforms from 5050-300M⊙300 M_\odot for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).Comment: Updated to published version, which includes a section comparing the surrogate and effective-one-body models. The surrogate is publicly available for download at http://www.black-holes.org/surrogates/ . 6 pages, 6 figure

    A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers

    Get PDF
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO's first detection of gravitational waves from merging black holes, the model is built from a set of 276276 numerical relativity (NR) simulations with mass ratios q≤2q \leq 2, dimensionless spin magnitudes up to 0.80.8, and the restriction that the initial spin of the smaller black hole lies along the axis of orbital angular momentum. It produces waveforms which begin ∼30\sim 30 gravitational wave cycles before merger and continue through ringdown, and which contain the effects of precession as well as all ℓ∈{2,3}\ell \in \{2, 3\} spin-weighted spherical-harmonic modes. We perform cross-validation studies to compare the model to NR waveforms \emph{not} used to build the model, and find a better agreement within the parameter range of the model than other, state-of-the-art precessing waveform models, with typical mismatches of 10−310^{-3}. We also construct a frequency domain surrogate model (called NRSur4d2s_FDROM) which can be evaluated in 50 ms50\, \mathrm{ms} and is suitable for performing parameter estimation studies on gravitational wave detections similar to GW150914.Comment: 34 pages, 26 figure

    Surrogate models for precessing binary black hole simulations with unequal masses

    Get PDF
    Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These simulations, however, are prohibitively expensive for direct data analysis applications such as parameter estimation. We present two new fast and accurate surrogate models for the outputs of these simulations: the first model, NRSur7dq4, predicts the gravitational waveform and the second model, \RemnantModel, predicts the properties of the remnant black hole. These models extend previous 7-dimensional, non-eccentric precessing models to higher mass ratios, and have been trained against 1528 simulations with mass ratios q≤4q\leq4 and spin magnitudes χ1,χ2≤0.8\chi_1,\chi_2 \leq 0.8, with generic spin directions. The waveform model, NRSur7dq4, which begins about 20 orbits before merger, includes all ℓ≤4\ell \leq 4 spin-weighted spherical harmonic modes, as well as the precession frame dynamics and spin evolution of the black holes. The final black hole model, \RemnantModel, models the mass, spin, and recoil kick velocity of the remnant black hole. In their training parameter range, both models are shown to be more accurate than existing models by at least an order of magnitude, with errors comparable to the estimated errors in the numerical relativity simulations. We also show that the surrogate models work well even when extrapolated outside their training parameter space range, up to mass ratios q=6q=6.Comment: Matches published version. Models publicly available at https://zenodo.org/record/3455886#.XZ9s1-dKjBI and https://pypi.org/project/surfinB

    A Numerical Relativity Waveform Surrogate Model for Generically Precessing Binary Black Hole Mergers

    Get PDF
    A generic, non-eccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by 7 intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einstein's equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all 77 dimensions of the intrinsic non-eccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of 744744 numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to 0.80.8 and mass ratios up to 22, includes all ℓ≤4\ell \leq 4 modes, begins about 2020 orbits before merger, and can be evaluated in ∼ 50 ms\sim~50\,\mathrm{ms}. We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that would otherwise require millions of numerical relativity waveforms, such as parameter inference and tests of general relativity with GW observations.Comment: 10 pages, 5 figures; Added report numbe
    • …
    corecore