30,178 research outputs found

    Negative Differential Resistivity and Positive Temperature Coefficient of Resistivity effect in the diffusion limited current of ferroelectric thin film capacitors

    Full text link
    We present a model for the leakage current in ferroelectric thin- film capacitors which explains two of the observed phenomena that have escaped satisfactory explanation, i.e. the occurrence of either a plateau or negative differential resistivity at low voltages, and the observation of a Positive Temperature Coefficient of Resistivity (PTCR) effect in certain samples in the high-voltage regime. The leakage current is modelled by considering a diffusion-limited current process, which in the high-voltage regime recovers the diffusion-limited Schottky relationship of Simmons already shown to be applicable in these systems

    Density of Bloch Waves after a Quench

    Full text link
    Production of Bloch waves during a rapid quench is studied by analytical and numerical methods. The density of Bloch waves decays exponentially with the quench time. It also strongly depends on temperature. Very few textures are produced for temperatures lower than a characteristic temperature proportional to the square of the magnetic field.Comment: 4 pages in RevTex + 3 .ps files; improved presentation; version to appear in PR

    How black holes get their kicks: Gravitational radiation recoil revisited

    Full text link
    Gravitational waves from the coalescence of binary black holes carry away linear momentum, causing center of mass recoil. This "radiation rocket" effect has important implications for systems with escape speeds of order the recoil velocity. We revisit this problem using black hole perturbation theory, treating the binary as a test mass spiraling into a spinning hole. For extreme mass ratios (q = m1/m2 << 1) we compute the recoil for the slow inspiral epoch of binary coalescence very accurately; these results can be extrapolated to q ~ 0.4 with modest accuracy. Although the recoil from the final plunge contributes significantly to the final recoil, we are only able to make crude estimates of its magnitude. We find that the recoil can easily reach ~ 100-200 km/s, but most likely does not exceed ~ 500 km/s. Though much lower than previous estimates, this recoil is large enough to have important astrophysical consequences. These include the ejection of black holes from globular clusters, dwarf galaxies, and high-redshift dark matter halos.Comment: 4 pages, 2 figures, emulateapj style; minor changes made; accepted to ApJ Letter

    Characterization of the Crab Pulsar's Timing Noise

    Full text link
    We present a power spectral analysis of the Crab pulsar's timing noise, mainly using radio measurements from Jodrell Bank taken over the period 1982-1989. The power spectral analysis is complicated by nonuniform data sampling and the presence of a steep red power spectrum that can distort power spectra measurement by causing severe power ``leakage''. We develop a simple windowing method for computing red noise power spectra of uniformly sampled data sets and test it on Monte Carlo generated sample realizations of red power-law noise. We generalize time-domain methods of generating power-law red noise with even integer spectral indices to the case of noninteger spectral indices. The Jodrell Bank pulse phase residuals are dense and smooth enough that an interpolation onto a uniform time series is possible. A windowed power spectrum is computed revealing a periodic or nearly periodic component with a period of about 568 days and a 1/f^3 power-law noise component with a noise strength of 1.24 +/- 0.067 10^{-16} cycles^2/sec^2 over the analysis frequency range 0.003 - 0.1 cycles/day. This result deviates from past analyses which characterized the pulse phase timing residuals as either 1/f^4 power-law noise or a quasiperiodic process. The analysis was checked using the Deeter polynomial method of power spectrum estimation that was developed for the case of nonuniform sampling, but has lower spectral resolution. The timing noise is consistent with a torque noise spectrum rising with analysis frequency as f implying blue torque noise, a result not predicted by current models of pulsar timing noise. If the periodic or nearly periodic component is due to a binary companion, we find a companion mass > 3.2 Earth masses.Comment: 53 pages, 9 figures, submitted to MNRAS, abstract condense

    Integrated stratigraphy of the Waitakian-Otaian Stage boundary stratotype, Early Miocene, New Zealand

    Get PDF
    The base of the type section of the Otaian Stage at Bluecliffs, South Canterbury, is recognised as the stratotype for the boundary between the Waitakian and Otaian Stages. Principal problems with the boundary are the restriction of existing bioevent proxies to shelf and upper slope environments and its uncertain age. These topics are addressed by a multidisplinary study of a 125 m section about the boundary, which examines its lithostratigraphy, depositional setting, biostratigraphy, correlation, and geochronology. The lower siltstone lithofacies (0-38.5 m) was deposited at upper bathyal depths (200-600 m) in a marginal basin which was partially sheltered from fully oceanic circulation by a submarine high and islands. The site was covered by cool-temperate water and was probably adjacent to the Subtropical Convergence. This unit is succeeded by the banded lithofacies (38.5-106 m) and the upper siltstone lithofacies (basal 19 m studied). Paleodepth probably declined up-sequence, but deposition at shelf depths is not definitely indicated. A cyclic pattern of abundance spikes in benthic and planktonic foraminifera commences 9 m above base and extends to 73 m in the banded lithofacies. Oxygen isotope excursions (up to 2.08%) in Euuvigerina miozea and Cibicides novozelandicus are greatest within the interval containing the abundance spikes. The stage boundary occurs in the banded lithofacies at the highest abundance spike (73 m). Although condensed intervals might affect the completeness of the section, they are not associated with sedimentary discontinuities, and we consider that the section is suitable as a biostratigraphic reference. Spores, pollens, dinoflagellates, calcareous nannofossils, foraminifera, bryozoans, and ostracods are preserved near the boundary, but molluscs principally occur higher, in the shallower upper siltstone lithofacies. Siliceous microfossils are rare. There is considerable scope for further biostratigraphic research. The primary event marking the boundary at 73 m is the appearance of the benthic foraminifer Ehrenbergina marwicki. This is a distinctive and widely distributed event but is restricted to shelf and upper bathyal environments. Supplementary events in planktonic foraminifera and calcareous nannofossils were researched. Highest occurrences of Globigerina brazieri and G. euapertura are recorded at 47 and 58 m. There is a marked decline in relative abundance of Paragloborotalia spp. at 62 m. Helicosphaera carteri becomes more abundant than H. euphratis between 56 and 87 m. These events are not exact proxies for the boundary but they may usefully indicate proximity to it. They occur in the interval of prominent spikes in foraminiferal abundance. The Waitakian-Otaian boundary is dated at 21.7 Ma by strontium isotopes. Stable primary remanence could not be determined in a pilot paleomagnetic study of Bluecliffs specimens. However, specimens trended towards reversed polarity, and remagnetisation great circle analysis will allow directions to be calculated in future collections

    Ultrafast pump-probe dynamics in ZnSe-based semiconductor quantum-wells

    Full text link
    Pump-probe experiments are used as a controllable way to investigate the properties of photoexcited semiconductors, in particular, the absorption saturation. We present an experiment-theory comparison for ZnSe quantum wells, investigating the energy renormalization and bleaching of the excitonic resonances. Experiments were performed with spin-selective excitation and above-bandgap pumping. The model, based on the semiconductor Bloch equations in the screened Hartree-Fock approximation, takes various scattering processes into account phenomenologically. Comparing numerical results with available experimental data, we explain the experimental results and find that the electron spin-flip occurs on a time scale of 30 ps.Comment: 10 pages, 9 figures. Key words: nonlinear and ultrafast optics, modeling of femtosecond pump-probe experiments, electron spin-flip tim

    Discovery of a New Transient Magnetar Candidate: XTE J1810-197

    Full text link
    We report the discovery of a new X-ray pulsar, XTE J1810-197. The source was serendipitously discovered on 2003 July 15 by the Rossi X-ray Timing Explorer (RXTE) while observing the soft gamma repeater SGR 1806-20. The pulsar has a 5.54 s spin-period and a soft spectrum (photon index ~ 4). We detect the source in earlier RXTE observations back to 2003 January. These show that a transient outburst began between 2002 November 17 and 2003 January 23 and that the pulsar has been spinning down since then, with a high rate Pdot ~ 10^-11 s/s showing significant timing noise, but no evidence for Doppler shifts due to a binary companion. The rapid spin-down rate and slow spin-period imply a super-critical magnetic field B=3x10^14 G and a young characteristic age < 7600 yr. These properties are strikingly similar to those of anomalous X-ray pulsars and soft gamma repeaters, making the source a likely new magnetar. A follow-up Chandra observation provided a 2".5 radius error circle within which the 1.5 m Russian-Turkish Optical Telescope RTT150 found a limiting magnitude of R_c=21.5, in accord with other recently reported limits. The source is present in archival ASCA and ROSAT data as well, at a level 100 times fainter than the \~ 3 mCrab seen in 2003. This suggests that other X-ray sources that are currently in a state similar to the inactive phase of XTE J1810-197 may also be unidentified magnetars awaiting detection via a similar activity.Comment: Submitted to ApJL; 4 pages; 4 figure

    Stellar-Mass Black Holes in the Solar Neighborhood

    Full text link
    We search for nearby, isolated, accreting, ``stellar-mass'' (3 to 100M100M_\odot) black holes. Models suggest a synchrotron spectrum in visible wavelengths and some emission in X-ray wavelengths. Of 3.7 million objects in the Sloan Digital Sky Survey Early Data Release, about 150,000 objects have colors and properties consistent with such a spectrum, and 87 of these objects are X-ray sources from the ROSAT All Sky Survey. Thirty-two of these have been confirmed not to be black-holes using optical spectra. We give the positions and colors of these 55 black-hole candidates, and quantitatively rank them on their likelihood to be black holes. We discuss uncertainties the expected number of sources, and the contribution of blackholes to local dark matter.Comment: Replaced with version accepted by ApJ. 40 pages, 8 figure

    Pressure Tuning of the Charge Density Wave in the Halogen-Bridged Transition-Metal (MX) Solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4

    Full text link
    We report the pressure dependence up to 95 kbar of Raman active stretching modes in the quasi-one-dimensional MX chain solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4. The data indicate that a predicted pressure-induced insulator-to-metal transition does not occur, but are consistent with the solid undergoing either a three-dimensional structural distortion, or a transition from a charge-density wave to another broken-symmetry ground state. We show that such a transition cacan be well-modeled within a Peierls-Hubbard Hamiltonian. 1993 PACS: 71.30.+h, 71.45.Lr, 75.30.Fv, 78.30.-j, 81.40.VwComment: 4 pages, ReVTeX 3.0, figures available from the authors on request (Gary Kanner, [email protected]), to be published in Phys Rev B Rapid Commun, REVISION: minor typos corrected, LA-UR-94-246
    corecore