2,093 research outputs found

    Generalized Entanglement as a Natural Framework for Exploring Quantum Chaos

    Get PDF
    We demonstrate that generalized entanglement [Barnum {\em et al.}, Phys. Rev. A {\bf 68}, 032308 (2003)] provides a natural and reliable indicator of quantum chaotic behavior. Since generalized entanglement depends directly on a choice of preferred observables, exploring how generalized entanglement increases under dynamical evolution is possible without invoking an auxiliary coupled system or decomposing the system into arbitrary subsystems. We find that, in the chaotic regime, the long-time saturation value of generalized entanglement agrees with random matrix theory predictions. For our system, we provide physical intuition into generalized entanglement within a single system by invoking the notion of extent of a state. The latter, in turn, is related to other signatures of quantum chaos.Comment: clarified and expanded version accepted by Europhys. Let

    Degenerate dispersive equations arising in the study of magma dynamics

    Full text link
    An outstanding problem in Earth science is understanding the method of transport of magma in the Earth's mantle. Models for this process, transport in a viscously deformable porous media, give rise to scalar degenerate, dispersive, nonlinear wave equations. We establish a general local well-posedness for a physical class of data (roughly H1H^1) via fixed point methods. The strategy requires positive lower bounds on the solution. This is extended to global existence for a subset of possible nonlinearities by making use of certain conservation laws associated with the equations. Furthermore, we construct a Lyapunov energy functional, which is locally convex about the uniform state, and prove (global in time) nonlinear dynamic stability of the uniform state for any choice of nonlinearity. We compare the dynamics to that of other problems and discuss open questions concerning a larger range of nonlinearities, for which we conjecture global existence.Comment: 27 Pages, 7 figures are not present in this version. See http://www.columbia.edu/~grs2103/ for a PDF with figures. Submitted to Nonlinearit

    Data Segmentation in Electronic Health Information Exchange: Policy Considerations and Analysis

    Get PDF
    The issue of whether and, if so, to what extent patients should have control over the sharing or withholding of their health information represents one of the foremost policy challenges related to electronic health information exchange. It is widely acknowledged that patients\u27 health information should flow where and when it is needed to support the provision of appropriate and high-quality care. Equally significant, however, is the notion that patients want their needs and preferences to be considered in the determination of what information is shared with other parties, for what purposes, and under what conditions. Some patients may prefer to withhold or sequester certain elements of health information, often when it is deemed by them (or on their behalf) to be sensitive, whereas others may feel strongly that all of their health information should be shared under any circumstance. This discussion raises the issue of data segmentation, which we define for the purposes of this paper as the process of sequestering from capture, access or view certain data elements that are perceived by a legal entity, institution, organization, or individual as being undesirable to share. This whitepaper explores key components of data segmentation, circumstances for its use, associated benefits and challenges, various applied approaches, and the current legal environment shaping these endeavors

    Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: 100,000 z<3 Quasars from Data Release One

    Full text link
    We present a catalog of 100,563 unresolved, UV-excess (UVX) quasar candidates to g=21 from 2099 deg^2 of the Sloan Digital Sky Survey (SDSS) Data Release One (DR1) imaging data. Existing spectra of 22,737 sources reveals that 22,191 (97.6%) are quasars; accounting for the magnitude dependence of this efficiency, we estimate that 95,502 (95.0%) of the objects in the catalog are quasars. Such a high efficiency is unprecedented in broad-band surveys of quasars. This ``proof-of-concept'' sample is designed to be maximally efficient, but still has 94.7% completeness to unresolved, g<~19.5, UVX quasars from the DR1 quasar catalog. This efficient and complete selection is the result of our application of a probability density type analysis to training sets that describe the 4-D color distribution of stars and spectroscopically confirmed quasars in the SDSS. Specifically, we use a non-parametric Bayesian classification, based on kernel density estimation, to parameterize the color distribution of astronomical sources -- allowing for fast and robust classification. We further supplement the catalog by providing photometric redshifts and matches to FIRST/VLA, ROSAT, and USNO-B sources. Future work needed to extend the this selection algorithm to larger redshifts, fainter magnitudes, and resolved sources is discussed. Finally, we examine some science applications of the catalog, particularly a tentative quasar number counts distribution covering the largest range in magnitude (14.2<g<21.0) ever made within the framework of a single quasar survey.Comment: 35 pages, 11 figures (3 color), 2 tables, accepted by ApJS; higher resolution paper and ASCII version of catalog available at http://sdss.ncsa.uiuc.edu/qso/nbckde

    Multicenter evaluation of computer automated versus traditional surveillance of hospital-acquired bloodstream infections

    Get PDF
    Objective.Central line–associated bloodstream infection (BSI) rates are a key quality metric for comparing hospital quality and safety. Traditional BSI surveillance may be limited by interrater variability. We assessed whether a computer-automated method of central line–associated BSI detection can improve the validity of surveillance.Design.Retrospective cohort study.Setting.Eight medical and surgical intensive care units (ICUs) in 4 academic medical centers.Methods.Traditional surveillance (by hospital staff) and computer algorithm surveillance were each compared against a retrospective audit review using a random sample of blood culture episodes during the period 2004–2007 from which an organism was recovered. Episode-level agreement with audit review was measured with κ statistics, and differences were assessed using the test of equal κ coefficients. Linear regression was used to assess the relationship between surveillance performance (κ) and surveillance-reported BSI rates (BSIs per 1,000 central line–days).Results.We evaluated 664 blood culture episodes. Agreement with audit review was significantly lower for traditional surveillance (κ [95% confidence interval (CI)] = 0.44 [0.37–0.51]) than computer algorithm surveillance (κ [95% CI] [0.52–0.64]; P = .001). Agreement between traditional surveillance and audit review was heterogeneous across ICUs (P = .001); furthermore, traditional surveillance performed worse among ICUs reporting lower (better) BSI rates (P = .001). In contrast, computer algorithm performance was consistent across ICUs and across the range of computer-reported central line–associated BSI rates.Conclusions.Compared with traditional surveillance of bloodstream infections, computer automated surveillance improves accuracy and reliability, making interfacility performance comparisons more valid.Infect Control Hosp Epidemiol 2014;35(12):1483–1490</jats:sec

    LAND SNAKES OF MEDICAL SIGNIFICANCE IN MALAYSIA

    Get PDF
    The range of snakes of medical significance in Malaysia currently encompasses four families of snakes (Natricidae, Elapidae, Pythonidae and Viperidae). There are limited data on the distribution of snakes in the country. The following account is based on available published information on snakes recorded from Peninsular Malaysia, Labuan, Sabah and Sarawak. This book should be viewed as a guide, especially for healthcare professionals, to identify and manage snake related injuries in Malaysia. Information on the snake species listed here is based on the local data and those from neighbouring countries. Due to their geographical proximity, snakes occurring in Peninsular Malaysia are genetically closer to those from Thailand and Singapore, while those on Sabah and Sarawak are naturally closer to populations from Brunei Darussalam, Kalimantan and islands of the southern Philippines

    From Cancer to Diarrhea: The Moving Target of Public Concern about Environmental Health Risks

    Get PDF
    Public concern about the environment can be unpredictable because it is influenced by numerous factors. Environmental health issues often emerge as important because the public is worried about their health especially when it comes to cancer. Public fear of cancer from environmental exposures is reinforced by many of the US regulations that set pollutant limits based on reducing the risk of cancers rather than other health outcomes. While fear of cancer will never dissipate, recent foodborne outbreaks are contributing to raising public awareness of the health effects from microbes. This paper adds to the dialogue about the challenges of enhancing public understanding of environmental health issues. Internal factors, such as worry, that contribute to public outrage are sometimes more important than external factors such as the media. In addition, relying on the media to inform the public about imminent public health risks may be an ineffective approach to enhancing understanding. In the end, scientists and risk communicators are forced to compete with politicians who are often very effective at manipulating public understanding of risk

    Photometric Redshifts of Quasars

    Get PDF
    We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a sample of 2625 quasars, we show that photo-z determination is even possible for z<=2.2 despite the lack of a strong continuum break that robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within delta z = 0.2; the fraction of correct photometric redshifts is even better for z>3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of on the order of 10^6 quasars candidates in addition to the 10^5 quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.Comment: 29 pages, 8 figures, submitted to A
    • …
    corecore