279 research outputs found

    Analytic Approximations for Transit Light Curve Observables, Uncertainties, and Covariances

    Full text link
    The light curve of an exoplanetary transit can be used to estimate the planetary radius and other parameters of interest. Because accurate parameter estimation is a non-analytic and computationally intensive problem, it is often useful to have analytic approximations for the parameters as well as their uncertainties and covariances. Here we give such formulas, for the case of an exoplanet transiting a star with a uniform brightness distribution. We also assess the advantages of some relatively uncorrelated parameter sets for fitting actual data. When limb darkening is significant, our parameter sets are still useful, although our analytic formulas underpredict the covariances and uncertainties.Comment: 33 pages, 14 figure

    Spitzer and z' Secondary Eclipse Observations of the Highly Irradiated Transiting Brown Dwarf KELT-1b

    Get PDF
    We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, and the atmospheres of irradiated giant planets at high surface gravity. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195+/-0.010% at 3.6um and 0.200+/-0.012% at 4.5um. We also find tentative evidence for the secondary eclipse in the z' band with a depth of 0.049+/-0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6]-[4.5] color of 0.07+/-0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6]-[4.5] colors of ~0.4, with a very large range from ~0 to ~1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b has an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.Comment: 14 pages, 3 tables, 11 figures. Accepted by ApJ. Updated to reflect the accepted versio

    Commentary: Essential Programs and Services Model

    Get PDF
    To further discussion about the Essential Programs and Services (EPS) model for funding public education in Maine, Maine Policy Review asked eight superintendentsā€”representing districts across the stateā€” to provide their views. We also asked each to discuss the needs of his district and whether additional state policy options were necessary to tackle the most pressing issues. The districts represented by these superintendents are a cross section of urban and rural high-receivers and low-receivers. Still, several commonalities emerge: the need for a state commitment that does not wax and wane with the business cycle; the urgency of professional development for new and experienced teachers; and, the importance of linking student outcomes with student assessment measures and student funding. In short, EPS is not seen as a solution to the stateā€™s ongoing debate over public-education funding, but is recognized as a necessary first step

    Diamagnetic Suppression of Component Magnetic Reconnection at the Magnetopause

    Full text link
    We present particle-in-cell simulations of collisionless magnetic reconnection in a system (like the magnetopause) with a large density asymmetry across the current layer. In the presence of an ambient component of the magnetic field perpendicular to the reconnection plane the gradient creates a diamagnetic drift that advects the X-line with the electron diamagnetic velocity. When the relative drift between the ions and electrons is of the order the Alfven speed the large scale outflows from the X-line necessary for fast reconnection cannot develop and the reconnection is suppressed. We discuss how these effects vary with both the plasma beta and the shear angle of the reconnecting field and discuss observational evidence for diamagnetic stabilization at the magnetopause.Comment: 10 pages, 10 figures; accepted by JGR; agu2001.cls and agu.bst include

    KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Get PDF
    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V=10.7V = 10.7 star (TYC 8378-64-1), with Teff_{eff} = 5948Ā±745948\pm74 K, logā”g\log{g} = 4.319āˆ’0.030+0.0204.319_{-0.030}^{+0.020} and [Fe/H] = 0.09āˆ’0.10+0.110.09_{-0.10}^{+0.11}, an inferred mass Māˆ—_{*} = 1.112āˆ’0.061+0.0551.112_{-0.061}^{+0.055} MāŠ™_{\odot} and radius Rāˆ—_{*} = 1.209āˆ’0.035+0.0471.209_{-0.035}^{+0.047} RāŠ™_{\odot}. The planet has a radius RP_{P} = 1.399āˆ’0.049+0.0691.399_{-0.049}^{+0.069} RJ_{J} and mass MP_{P} = 0.679āˆ’0.038+0.0390.679_{-0.038}^{+0.039} MJ_{J}. The planet has an eccentricity consistent with zero and a semi-major axis aa = 0.05250āˆ’0.00097+0.000860.05250_{-0.00097}^{+0.00086} AU. The best fitting linear ephemeris is T0T_{0} = 2457066.72045Ā±\pm0.00027 BJDTDB_{TDB} and P = 4.1662739Ā±\pm0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of Teq_{eq} = 1377āˆ’23+281377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817āˆ’0.054+0.0680.817_{-0.054}^{+0.068} Ɨ\times 109^9 erg sāˆ’1^{-1} cmāˆ’2^{-2}, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b is unlikely to survive beyond the current subgiant phase, due to a concomitant in-spiral of the planet over the next āˆ¼\sim1 Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V << 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.Comment: 20 pages, 13 figures, 7 tables, accepted for publication in MNRA

    A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions

    Get PDF
    Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed āˆ¼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for ā€œorphanā€ receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets

    A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions

    Get PDF
    Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed āˆ¼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for ā€œorphanā€ receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets

    KELT-3b: A Hot Jupiter Transiting a V=9.8 Late-F Star

    Get PDF
    We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477 (-0.067, +0.066) M_J, and radius of 1.345 +/- 0.072 R_J, with an orbital period of 2.7033904 +/- 0.000010 days. The host star, KELT-3, is a V=9.8 late F star with M_* = 1.278 (-0.061, +0.063) M_sun, R_* = 1.472 (-0.067, +0.065) R_sun, T_eff = 6306 (-49, +50) K, log(g) = 4.209 (-0.031, +0.033), and [Fe/H] = 0.044 (-0.082, +0.080), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically-identified threshold for radius inflation suggested by Demory & Seager (2011).Comment: 12 pages, 12 figures, accepted to Ap
    • ā€¦
    corecore