4,753 research outputs found
Employment mobility in high-technology agglomerations: the cases of Oxfordshire and Cambridgeshire
This paper examines labour market behaviour of the highly skilled in high-tech local economies, taking the UK examples of Oxfordshire and Cambridgeshire as case studies. It reports on data from a survey of members of three scientific institutes to compare rates of employee mobility in the two locations and considers the likely explanations and implications of those patterns
Pressure-induced magnetic transition and sound velocities of Fe3C: Implications for carbon in the Earth’s inner core
We have carried out nuclear resonant scattering measurements on 57Fe-enriched Fe3C between 1 bar and 50 GPa at 300 K. Synchrotron Mo¨ssbauer spectra reveal a pressure-induced magnetic transition in Fe3C between 4.3 and 6.5 GPa. On the basis of our nuclear resonant inelastic X-ray scattering spectra and existing equation-of-state data, we have derived the compressional wave velocity VP and shear wave velocity VS for the high-pressure nonmagnetic phase, which can be expressed as functions of density (r): VP(km/s) = -3.99 + 1.29r(g/cm3) and VS(km/s) = 1.45 + 0.24r(g/cm3). The addition of carbon to iron-nickel alloy brings density, VP and VS closer to seismic observations, supporting carbon as a principal light element in the Earth’s inner core
AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water
AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ∼420 nm∼420 nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber
Traumatic axonal injury and persistent emotional lability in an adolescent following moderate traumatic brain injury: A case study
A 15-year-old male was treated secondary to sustaining a moderate traumatic brain injury (moderate TBI). Symptom self-report, and computerized and paper-and-pencil-based neurocognitive, vestibular/ocular motor, and imaging data were used throughout to document impairment and recovery. The patient demonstrated persistent emotional lability concurrent with vestibular impairment. In addition to clinical evaluation and management, the patient also underwent susceptibility-weighted imaging, which revealed axonal shearing across the corpus callo-sum and areas innervating the prefrontal cortex. Paper-and-pencil neurocognitive measures revealed persisting deficits, despite normal-appearing computerized test results. Implications of this case underline the importance of an integrative evaluation process including clinical interview, neurocognitive and vestibular/ocular physical therapy, and advanced neuroimaging, especially in cases with atypical presentation
Karhunen-Lo`eve Decomposition of Extensive Chaos
We show that the number of KLD (Karhunen-Lo`eve decomposition) modes D_KLD(f)
needed to capture a fraction f of the total variance of an extensively chaotic
state scales extensively with subsystem volume V. This allows a correlation
length xi_KLD(f) to be defined that is easily calculated from spatially
localized data. We show that xi_KLD(f) has a parametric dependence similar to
that of the dimension correlation length and demonstrate that this length can
be used to characterize high-dimensional inhomogeneous spatiotemporal chaos.Comment: 12 pages including 4 figures, uses REVTeX macros. To appear in Phys.
Rev. Let
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy
Infrared spectroscopy is a powerful tool for basic and applied science. The
molecular spectral fingerprints in the 3 um to 20 um region provide a means to
uniquely identify molecular structure for fundamental spectroscopy, atmospheric
chemistry, trace and hazardous gas detection, and biological microscopy. Driven
by such applications, the development of low-noise, coherent laser sources with
broad, tunable coverage is a topic of great interest. Laser frequency combs
possess a unique combination of precisely defined spectral lines and broad
bandwidth that can enable the above-mentioned applications. Here, we leverage
robust fabrication and geometrical dispersion engineering of silicon
nanophotonic waveguides for coherent frequency comb generation spanning 70 THz
in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides
significant spectral broadening and engineered spectra targeted at specific
mid-infrared bands. We use this coherent light source for dual-comb
spectroscopy at 5 um.Comment: 26 pages, 5 figure
An evidence map of psychosocial interventions for the earliest stages of bipolar disorder.
Depression, schizophrenia, and bipolar disorder are three of the four most burdensome problems in people aged under 25 years. In psychosis and depression, psychological interventions are effective, low-risk, and high-benefit approaches for patients at high risk of first-episode or early-onset disorders. We review the use of psychological interventions for early-stage bipolar disorder in patients aged 15-25 years. Because previous systematic reviews had struggled to identify information about this emerging sphere of research, we used evidence mapping to help us identify the extent, distribution, and methodological quality of evidence because the gold standard approaches were only slightly informative or appropriate. This strategy identified 29 studies in three target groups: ten studies in populations at high risk for bipolar disorder, five studies in patients with a first episode, and 14 studies in patients with early-onset bipolar disorder. Of the 20 completed studies, eight studies were randomised trials, but only two had sample sizes of more than 100 individuals. The main interventions used were family, cognitive behavioural, and interpersonal therapies. Only behavioural family therapies were tested across all of our three target groups. Although the available interventions were well adapted to the level of maturity and social environment of young people, few interventions target specific developmental psychological or physiological processes (eg, ruminative response style or delayed sleep phase), or offer detailed strategies for the management of substance use or physical health
Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge
Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure. This removes many complicated and costly fabrication steps. Moreover, the cellular structures detailed in this work are among the highest- strength and most energy-absorbent materials known. This implies that a fabricated structure made from these materials would have unequaled mechanical properties compared to other metal foams or trusses. The process works by taking advantage of the electrical properties of the matrix material in the metal-matrix composite, which in this case is a metallic glass. Due to the random nanoscale arrangement of atoms (without any grain boundaries), the matrix glass exhibits a near-constant electrical resistivity as a function of temperature. By placing the composite panels between two copper electrode plates and discharging a capacitor, the entire matrix of the panel can be heated to approximately 700 C in 10 milliseconds, which is above the alloy s solidus but below the liquidus. By designing the geometry of the panels into the shape of an egg box, the electrical discharge localizes only in the tips of each pyramidal cell. By applying a forging load during discharge, the nodes of the panels can be fused together into a single piece, which then dissipates heat through radiation back into a glassy state. This means that two panels can be metallurgically fused into one panel with no heat-affected zone, creating a seamless connection between panels. During the process, the soft metal particles (dendrites) that are uniformly distributed in the glassy matrix to increase the toughness are completely unaffected by the thermoplastic joining. The novelty is that a truss (or foam-like) structure can be formed with excellent energy- absorbing capabilities without the need for machining. The technique allows for large-scale fabrication of panels, well-suited for spacecraft shields or military vehicle door panels. Crystalline metal cellular structures cannot be fabricated using the thermoplastic joining technique described here. If metal panels were te assembled into a cellular structure, they would either have to be welded, brazed, bonded, or fastened together, creating a weak spot in the structure at each connection. Welded parts require a welding material to be added to the joint and exhibit a soft and weak heat-affected zone. Brazing and bonding do not form a metallurgical joint and thus exhibit low strengths, especially when the panels are pulled apart and fasteners require high-stress-concentration holes to be drilled. No equivalent rapid heating method exists for assembling metal panels together into cellular structures, and thus, those parts must be foamed, machined, or investment cast if they are to form a monolithic structure. If the crystalline panels were to be joined using capacitive discharge, as with a spot welder, their bond would be very weak, and the panels would have to be extremely thin. In contrast, the strength of joined BMG parts has been demonstrated to have strength comparable to the parent material. This technique opens up the possibility of using large-scale BMG hardware in spacecraft, military, or commercial applications
- …