447 research outputs found

    FSS-based approach for the power transmission enhancement through electrically small apertures

    Get PDF
    Cataloged from PDF version of article.In this paper, a novel approach, based on the employment of frequency selective surfaces, to enhance the power transmission through sub-wavelength apertures at the microwave frequencies is presented. A heuristic interpretation of the phenomenon is given, as well as an analytical model, based on the transmission line network representation. Finally, the performance of the proposed structure is validated through a set of full-wave numerical simulations. © 2011 Springer-Verlag

    Bioarchaeological and palaeogenomic portrait of two Pompeians that died during the eruption of Vesuvius in 79 AD

    Get PDF
    The archaeological site of Pompeii is one of the 54 UNESCO World Heritage sites in Italy, thanks to its uniqueness: the town was completely destroyed and buried by a Vesuvius’ eruption in 79 AD. In this work, we present a multidisciplinary approach with bioarchaeological and palaeogenomic analyses of two Pompeian human remains from the Casa del Fabbro. We have been able to characterize the genetic profle of the frst Pompeian’ genome, which has strong afnities with the surrounding central Italian population from the Roman Imperial Age. Our fndings suggest that, despite the extensive connection between Rome and other Mediterranean populations, a noticeable degree of genetic homogeneity exists in the Italian peninsula at that time. Moreover, palaeopathological analyses identifed the presence of spinal tuberculosis and we further investigated the presence of ancient DNA from Mycobacterium tuberculosis. In conclusion, our study demonstrates the power of a combined approach to investigate ancient humans and confrms the possibility to retrieve ancient DNA from Pompeii human remains. Our initial fndings provide a foundation to promote an intensive and extensive paleogenetic analysis in order to reconstruct the genetic history of population from Pompeii, a unique archaeological site

    Resonant artificial structures to achieve extraordinary transmission at microwaves

    Get PDF
    In this contribution, the role of artificial resonant structures in increasing the transmission through sub-wavelength apertures is discussed. Those devices are capable to enhance the aperture equivalent electric and magnetic dipole moments and, consequently, the overall power transmission. The design details are given and the enhancement performances are then illustrated through the use of full-wave simulations. Such structures may find applications in different fields, such as high-resolution spatial filters, ultra-diffractive imaging systems, etc © 2010 EuMA

    Dysfunctional mitochondria accumulate in a skeletal muscle knockout model of Smn1, the causal gene of spinal muscular atrophy

    Get PDF
    The approved gene therapies for spinal muscular atrophy (SMA), caused by loss of survival motor neuron 1 (SMN1), greatly ameliorate SMA natural history but are not curative. These therapies primarily target motor neurons, but SMN1 loss has detrimental effects beyond motor neurons and especially in muscle. Here we show that SMN loss in mouse skeletal muscle leads to accumulation of dysfunctional mitochondria. Expression profiling of single myofibers from a muscle specific Smn1 knockout mouse model revealed down-regulation of mitochondrial and lysosomal genes. Albeit levels of proteins that mark mitochondria for mitophagy were increased, morphologically deranged mitochondria with impaired complex I and IV activity and respiration and that produced excess reactive oxygen species accumulated in Smn1 knockout muscles, because of the lysosomal dysfunction highlighted by the transcriptional profiling. Amniotic fluid stem cells transplantation that corrects the SMN knockout mouse myopathic phenotype restored mitochondrial morphology and expression of mitochondrial genes. Thus, targeting muscle mitochondrial dysfunction in SMA may complement the current gene therapy

    Enhanced transmission through sub-wavelength apertures by using metamaterials

    Get PDF
    In this chapter, the role of complex artificial structures in enhancing the power transmission through sub-wavelength apertures is discussed. Such devices are aimed at exciting highly localized resonances in order to increase the aperture equivalent magnetic and electric dipole moments. Some examples, based on epsilon-near-zero metamaterials (ENZ), frequency selective surfaces (FSSs) and split-ring resonators (SRRs) at microwaves, and silver nano-particle pairs at terahertz scale, are presented. Such structures may find applications in different fields, such as high-resolution spatial filters, ultra-diffractive imaging systems, high-capacity optical memories, enhanced light throughput tips for near-field scanning optical microscopes, etc. © 2011 by World Scientific Publishing Co. Pte. Ltd. All rights reserved

    Exploring mobility in Italian Neolithic and Copper Age communities

    Get PDF
    As a means for investigating human mobility during late the Neolithic to the Copper Age in central and southern Italy, this study presents a novel dataset of enamel oxygen and carbon isotope values (delta (18)Oca and delta (13)Cca) from the carbonate fraction of biogenic apatite for one hundred and twenty-six individual teeth coming from two Neolithic and eight Copper Age communities. The measured delta (18)Oca values suggest a significant role of local sources in the water inputs to the body water, whereas delta (13)Cca values indicate food resources, principally based on C-3 plants. Both delta (13)Cca and delta (18)Oca ranges vary substantially when samples are broken down into local populations. Statistically defined thresholds, accounting for intra-site variability, allow the identification of only a few outliers in the eight Copper Age communities, suggesting that sedentary lifestyle rather than extensive mobility characterized the investigated populations. This seems to be also typical of the two studied Neolithic communities. Overall, this research shows that the investigated periods in peninsular Italy differed in mobility pattern from the following Bronze Age communities from more northern areas

    Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction

    Get PDF
    Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondria! energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/beta-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondria! ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondria! energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologie

    Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction

    Get PDF
    Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondria! energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/beta-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondria! ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondria! energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologie

    Genomic ancestry, diet and microbiomes of Upper Palaeolithic hunter-gatherers from San Teodoro cave

    Get PDF
    A combined ancient genomic, metagenomic, and paleoproteomic analysis reveals lifestyle and dietary information of Upper Palaeolithic huntergatherers from San Teodoro cave in Sicily, Italy.Recent improvements in the analysis of ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and genetic diversity of our species. Here we present a multi-omics study, integrating metagenomic and proteomic analyses of dental calculus, and human ancient DNA analysis of the petrous bones of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified Villabruna cluster. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analysis of dental calculus showed a diet rich in animal proteins which is also reflected on the oral microbiome composition. Our results demonstrate the power of this approach in the study of prehistoric humans and will enable future research to reach a more holistic understanding of the population dynamics and ecology

    The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic and Ischemic Tissue Damage

    Get PDF
    SummaryMitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo
    • …
    corecore