94 research outputs found

    Correlation of gravimetric and satellite geodetic data Interim progress report, 11 Sep. 1967 - 29 Feb. 1968

    Get PDF
    Gravimetric and geodetic data correlation for satellite position prediction accuracy with error analysi

    Correlation of gravimetric and satellite geodetic data, part 2 Interim scientific report, 11 Sep. 1967 - 29 Feb. 1968

    Get PDF
    Graphical output from computer correlated gravimetric and satellite geodetic dat

    Hsp70 localizes differently from chaperone Hsc70 in mouse mesoangioblasts under physiological growth conditions.

    Get PDF
    Mouse A6 mesoangioblasts express Hsp70 even in the absence of cellular stress. Its expression and its intracellular localization were investigated under normal growth conditions and under hyperthermic stress. Immunofluorescence assays indicated that without any stress a fraction of Hsp70 co-localized with actin microfilaments, in the cell cortex and in the contractile ring of dividing cells, while the Hsc70 chaperone did not. Hsp70 immunoprecipitation assays confirmed that a portion of Hsp70 binds actin. Immunoblot assays showed that both proteins were present in the nucleus. After heat treatment Hsp70 and actin continued to co-localize in the leading edge of A6 cells but not on microfilaments. Although Hsp70 and Hsc70 are both basally synthesized they showed different cellular distribution, suggesting an Hsp70 different activity respect to the Hsc70 chaperone. Moreover, we found Hsp70 in the culture medium as it has been described in other cell types

    Stress response in mesoangioblast stem cells

    Get PDF
    Stem cells are presumed to survive various stresses, since they are recruited to areas of tissue damage and regeneration, where inflammatory cytokines and cytotoxic cells may result in severe cell injury. We explored the ability of mesoangioblasts to respond to different cell stresses such as heat, heavy metals and osmotic stress, by analyzing heat shock protein (HSP)70 synthesis as a stress indicator. We found that the A6 mesoangioblast stem cells constitutively synthesize HSP70 in a heat shock transcription factor (HSF)-independent way. However, A6 respond to heat shock and cadmium treatment by synthesizing HSP70 over the constitutive expression and this synthesis is HSF1 dependent. The exposure of A6 to copper or to a hypertonic medium does neither induce HSP70 synthesis nor activation of HSF1, while a constitutive binding of constitutive heat shock element binding factor was found. Together, these data suggest that mesoangioblasts constitutively express HSP70 as an 'a priori' activation mechanism, while they maintain the ability to respond to stress stimuli. © 2006 Nature Publishing Group. All rights reserved

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    Get PDF
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    Get PDF
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies

    Embryonic Lethality in Mice Lacking the Nuclear Factor of Activated T Cells 5 Protein Due to Impaired Cardiac Development and Function

    Get PDF
    Nuclear factor of activated T cells 5 protein (NFAT5) is thought to be important for cellular adaptation to osmotic stress by regulating the transcription of genes responsible for the synthesis or transport of organic osmolytes. It is also thought to play a role in immune function, myogenesis and cancer invasion. To better understand the function of NFAT5, we developed NFAT5 gene knockout mice. Homozygous NFAT5 null (NFAT5−/−) mouse embryos failed to develop normally and died after 14.5 days of embryonic development (E14.5). The embryos showed peripheral edema, and abnormal heart development as indicated by thinner ventricular wall and reduced cell density at the compact and trabecular areas of myocardium. This is associated with reduced level of proliferating cell nuclear antigen and increased caspase-3 in these tissues. Cardiomyocytes from E14.5 NFAT5−/− embryos showed a significant reduction of beating rate and abnormal Ca2+ signaling profile as a consequence of reduced sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and ryanodine receptor (RyR) expressions. Expression of NFAT5 target genes, such as HSP 70 and SMIT were reduced in NFAT5−/− cardiomyocytes. Our findings demonstrated an essential role of NFAT5 in cardiac development and Ca2+ signaling. Cardiac failure is most likely responsible for the peripheral edema and death of NFAT5−/− embryos at E14.5 days

    GSK-3 Activity Is Critical for the Orientation of the Cortical Microtubules and the Dorsoventral Axis Determination in Zebrafish Embryos

    Get PDF
    The formation of dorsal-ventral (D–V) axis is the earliest event that breaks the radial symmetry and determines the bilateral body plan of a vertebrate embryo, however, the maternal control of this process is not fully understood. Here, we discovered a new dorsalizing window of acute lithium treatment, which covers only less than 10 minutes after fertilization. Lithium treatment in this window was not able to reverse the ventralized phenotype in tokkeabi (tkk) mutant embryos, and its dorsalizing activity on wild-type embryos was inhibited by nocodazole co-treatment. These evidences indicate that the underlying mechanism is independent of a direct activation of Wnt/β-catenin signaling, but depends on the upstream level of the microtubule mediated dorsal determinant transport. In order to identify the target of lithium in this newly discovered sensitive window, GSK-3 inhibitor IX as well as the IMPase inhibitor L690, 330 treatments were performed. We found that only GSK-3 inhibitor IX treatment mimicked the lithium treatment in the dorsalizing activity. Further study showed that the parallel pattern of cortical microtubules in the vegetal pole region and the directed migration of the Wnt8a mRNA were randomized by either lithium or GSK-3 inhibitor IX treatment. These results thus revealed an early and critical role of GSK-3 activity that regulates the orientation of the cortical microtubules and the directed transport of the dorsal determinants in zebrafish embryos
    • …
    corecore