81 research outputs found

    Root seasonal pattern, spatial distribution, and C:N ratio of matgrasspasture (Nardus stricta L.) in the Lombardy Prealps

    Get PDF
    The aim of the present study was to investigate carbon and nutrient cycling and the role of root dynamics in terrestrial ecosystems such as large abandoned pastures and natural grasslands present in the Prealps, for which below-ground processes are currently enigmatic. In particular, we quantified root/leaf biomass and C:N ratio throughout two growing seasons. Additionally, root traits such as root length density (RLD), root mass density (RMD), and root diameter classes (RDC) were also investigated with the aim of understanding the spatial distribution of roots in the soil. In our samples, we found that the roots could be divided into three main diameter classes and hence quantified the presence of each class along the soil profile. With regard to total root biomass, we found the occurrence of two peaks of biomass accumulation during the growth season, and when biomass accumulation was compared with climatic data, it was impossible to obtain a clear indication of the root turnover rate. In fact, the strong influence of grazing on the above-ground biomass could have affected, in turn, root biomass. In future, this possible complication will be avoided by repeating the measurements within enclosures to avoid grazing interference. We found that C:N ratio remained constant, with a single peak, suggesting a lower root decomposition during the warmest period (August 2006). The concentration of nitrogen in roots decreased with depth as a result of a decrease in roots with smaller diameters. The reverse was found for carbon content, which increased with depth, probably due to an increase in roots with larger diameters. This study represents the first attempt to estimate root turnover rates in this prealpine ecosystem, which have been analysed to date only for the above-ground biomass

    Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L.) in Italy Prealps: possible implications of coppice conversion to high forest

    Get PDF
    Fine-root systems represent a very sensitive plant compartment to environmental changes. Gaining further knowledge about their dynamics would improve soil carbon input understanding. This paper investigates C and N concentrations in fine roots in relation to different stand characteristics resulting from conversion of coppiced forests to high forests. In order to evaluate possible interferences due to different vegetative stages of vegetation, fine-root sampling was repeated six times in each stand during the same 2008 growing season. Fine-root sampling was conducted within three different soil depths (0-10; 10-20; and 20-30 cm). Fine-root traits were measured by means of WinRHIZO software which enable us to separate them into three different diameter classes (0-0.5, 0.5-1.0 and 1.0-2.0 mm). The data collected indicate that N concentration was higher in converted stands than in the coppiced stand whereas C concentration was higher in the coppiced stand than in converted stands. Consequently the fine-root C:N ratio was significantly higher in coppiced than in converted stands and showed an inverse relationship with fine-root turnover rate, confirming a significant change of fine-root status after the conversion of a coppice to high forest

    Influence of soil temperature and water content on fine-root seasonal growth of European beech natural forest in Southern Alps, Italy

    Get PDF
    In tree species, fine-root growth is influenced by the interaction between environmental factors such as soil temperature (ST) and soil moisture. Evidences suggest that if soil moisture and nutrient availability are adequate, rates of root growth increase with increasing soil temperature up to an optimum and then decline at supraoptimal temperatures. These optimal conditions vary between different taxa, the native environment and the fine-root diameter sub-classes considered. We investigated the effects of seasonal changes of both ST and soil water content (SWC) on very fine (d < 0.5 mm) and fine-root (0.5 < d < 2 mm) mass (vFRM, FRM) and length (vFRL, FRL) in Italian Southern Alps beech forests (Fagus sylvatica L.). Root samples were collected by soil core method. Turnover rate was higher for the very fine (0.51) than for the fine (0.36) roots. vFRM, FRM, vFRL and FRL displayed a complex seasonal pattern peaking in summer when SWC was around 40 % and ST was around 14 \ub0C. Above this temperature, under almost constant SWC, all above mentioned root traits decreased. vFRM, FRM, vFRL and FRL showed significant second-order polynomial relationship (p < 0.05) with SWC for both diameter classes, with the only exception of SRL. ST showed the same kind of relationship significant only with vFRM and vFRL, the latter within the 12-16 \ub0C smaller range. Interpolation analysis between root mass and length for both diameter classes and investigated soil environmental characteristics (ST and SWC) showed a clear roundish delineation only for vFRM. In conclusion, these findings clarified the occurrence of a bimodal fine-root growth seasonal pattern for our beech forest. The optimal growth ST and SWC ranges were delineated only for very fine roots, giving further evidence on this root category as the more responsiveness to soil environmental changes. Furthermore, F. sylvatica seems to adopt an intensive strategy to cope with decreasing SWC. Finally, fine-root growth, mainly radial type, seems to be driven by SWC, whereas very fine-root growth, mainly longitudinal type, seems to be driven by ST

    Poplar woody root proteome during the transition dormancy-active growth

    Get PDF
    Woody plants living in temperate climates finely regulate their growth and development in relation to seasonal changes; their transition from vegetative to dormancy phase represents an adaptation to their environment. Events occurring in the shoot during onset/release from dormancy have been largely investigated, whereas in woody roots they remain completely unknown. In recent years, we have been interested in understanding the molecular and physiological events occurring in poplar woody root during release from dormancy. Here, we propose the results of a comparative analysis of the proteome of poplar woody root sampled at different time points: T0 (dormancy condition), T1 (release from dormancy), and T2 (full vegetative condition). This study identified proteins that may be involved in the long-term survival of a dormant root or landmarking a specific time point
    corecore