44 research outputs found

    The ERK-1 function is required for HSV-1-mediated G1/S progression in HEP-2 cells and contributes to virus growth

    Get PDF
    The herpes simplex virus 1 is able to readdress different cellular pathways including cell cycle to facilitate its replication and spread. During infection, the progression of the cell cycle from G1 to S phase makes the cellular replication machinery accessible to viral DNA replication. In this work we established that HSV-1, in asynchronized HEp-2 cells, strictly controls cell cycle progression increasing S-phase population from 9 hours post infection until the end of HSV-1 replication. The G1/S phases progression depends on two important proteins, cyclin E and CDK2. We demonstrate that their phosphorylated status and then their activity during the infection is strongly correlated to viral replication events. In addition, HSV-1 is able to recruit and distribute ERK1/2 proteins in a spatio-temporal fashion, highlighting its downstream regulatory effects on cellular processes. According with this data, using chemical inhibitor U0126 and ERK dominant negative cells we found that the lack of ERK1 activity affects cyclin E protein accumulation, viral gene transcription and percentage of the cells in S phase, during the viral replication. These data suggested a complex interaction between ERK, cell cycle progression and HSV-1 replication

    Timing of therapy for latent tuberculosis infection among immigrants presenting to a U.S. public health clinic: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the U.S. more than half of incident tuberculosis (TB) cases occur in immigrants. Current guidelines recommend screening and treatment for latent TB infection (LTBI) within 5 years of arrival to the U.S. This study evaluates the timing of LTBI therapy among immigrants presenting for care to a public health TB clinic.</p> <p>Methods</p> <p>Retrospective chart review of patients prescribed LTBI treatment based on medical records from Prince Georges County Health Department.</p> <p>Results</p> <p>1882 immigrants received LTBI therapy at Prince Georges County Health Department between 1999 and 2004. 417 of these patients were diagnosed with LTBI through contact investigations and were excluded from the analysis. Among the remaining 1465 individuals, median time from arrival to the U.S. until initiation of LTBI therapy was 5 months (range 0–42.4 years). 16% of all immigrants initiated therapy more than 5 years after arrival to the U.S. A logistic regression model using risks identified on univariate analysis revealed that referral for therapy by non-immigration proceedings was the strongest predictor of initiation of therapy more than 5 years after arrival to the U.S. Other factors associated with > 5 year U.S. residence prior to initiation of LTBI therapy included female gender (adjusted odds ratio (AOR) 1.8, 95% CI 1.2–2.6), age ≄ 35 (AOR = 4.1, 95% 2.5–6.6), and originating from Latin American and the Caribbean (AOR = 1.9, 95% CI 1.3–3.0).</p> <p>Conclusion</p> <p>Foreign-born individuals who are not referred for LTBI therapy through immigration proceedings are less likely to receive LTBI therapy within 5 years of arrival to the U.S. These data highlight the need to explore other mechanisms for timely LTBI screening beyond services provided by immigration.</p

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    FOXM1 binds directly to non-consensus sequences in the human genome.

    Get PDF
    BACKGROUND: The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. RESULTS: An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. CONCLUSIONS: A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences.We would like to acknowledge the Genomics and bioinformatics core at the CRUK Research Institute for the Illumina sequencing and the Proteomics core for the LC/MS-MS protein analysis for the RIME experiments. We acknowledge the support from The University of Cambridge and Cancer Research UK. The Balasubramanian Laboratory is supported by core funding from Cancer Research UK (C14303/A17197). SB is a Wellcome Trust Principle Investigator.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-015-0696-

    Role of Fas/FasL in regulation of inflammation in vaginal tissue during HSV-2 infection

    Get PDF
    To assess the role of Fas in lesion development during genital HSV-2 infection, we used a well-established HSV-2 murine model applied to MRL-Faslpr/J (Fas−/−) and C3-Faslgld/J (FasL−/−) C57BL6 mice. In vitro infection of murine keratinocytes and epithelial cells was used to clarify molecular details of HSV-2 infection. Despite upregulation of Fas and FasL, HSV-2-infected keratinocytes and epithelial cells showed a moderate level of apoptosis due to upregulated expression of the anti-apoptotic factors Bcl-2, Akt kinase and NF-ÎșB. Inflammatory lesions within the HSV-2-infected epithelium of C57BL6 mice consisted of infected cells upregulating Fas, FasL and Bcl-2, uninfected cells upregulating Fas and neutrophils expressing both Fas and FasL. Apoptosis was detected in HSV-2-infected cells and to even higher extent in non-infected cells surrounding HSV-2 infection sites. HSV-2 infection of Fas- and FasL-deficient mice led to increased apoptosis and stronger recruitment of neutrophils within the infection sites. We conclude that the Fas pathway participates in regulation of inflammatory response in the vaginal epithelium at the initial stage of HSV-2 infection

    Immunological control of herpes simplex virus infections

    Full text link

    Protective effect of the acyclic nucleoside phosphonate tenofovir toward human T-cell leukemia/lymphotropic virus type 1 infection of human peripheral blood mononuclear cells in vitro

    No full text
    9-(R)-[(2-Phosphonomethoxy)propyls] adenine (tenofovir), is an acyclic nucleoside phosphonate known to inhibit HIV replication in vitro and to reduce viremia in HIV-infected patients. Here we have investigated whether tenofovir is able to protect peripheral blood mononuclear cells (PBMCs) from healthy donors against human T-cell leukemia/lymphotropic virus type 1 (HTLV-1) infection in vitro. PBMCs were pre-treated with tenofovir and infected by exposure to an irradiated cell line chronically harbouring HTLV-1. Measurements of viral DNA, as well as viral gene and protein expression, at 4 weeks after infection, revealed that tenofovir at concentrations of 1 mu M and higher completely protected PBMCs against HTLV-1; lower concentrations did not fully prevent HTLV-1 infection of the cultures. Nevertheless, in the long term, cell growth of infected PBMCs was inhibited in vitro even by 0.1 mu M tenofovir. In addition, tenofovir directly inhibited HTLV-1 reverse transcriptase activity, in a cell-free assay that utilizes a crude preparation from HTLV-1 viral particles as a source of the enzyme. The selectivity index of tenofovir for HTLV-1, was about four times higher than that of azidothymidine. Taken together our results strongly encourage further studies to investigate the real impact of tenofovir towards HTLV-1 infection. (c) 2005 Elsevier B.V. All rights reserved

    The Gamma-2-herpesvirus bovine herpesvirus 4 causes apoptotic infection in permissive cell lines

    No full text
    Increasing evidence suggests that regulation of apoptosis in infected cells is associated with several viral infections. The gammaherpesvirus bovine herpesvirus 4 (BHV-4) has been shown to harbor genes with antiapoptotic potentialities. However, here we have demonstrated that productive infection of adherent, permissive cell lines by BHV-4 resulted in a cytopathic effect characterized by induction of apoptosis. This phenomenon was confirmed using different techniques to detect apoptosis and using different virus strains and cell targets. Apoptosis induced by BHV-4 was inhibited by (1) treatment with doses of heparin, which completely inhibited virus attachment and infectivity; (2) UV treatment, which completely abrogated infectivity; and (3) treatment with a dose of phosphonoacetic acid, which blocked virus replication. Virus-induced apoptosis was associated with a down-regulation of Bcl-2 expression and was reduced by Z-VAD-FMK, but not by Z-DEVD-FMK (caspase-3-specific) caspase inhibitors. Inhibition of apoptosis by Z-VAD-FMK treatment during infection did not modify virus yield. Therefore, despite the presence of antiapoptotic genes in its genoma, BHV-4 could complete its cycle of productive infection while inducing apoptosis of infected cells. This finding might have implications for the pathobiology of BHV-4 and other gammaherpesviruses in vivo, (C) 2000 Academic Press

    A link between apoptosis and degree of phosphorylation of high mobility group A1a protein in leukemic cells.

    No full text
    Nuclear phosphoprotein HMGA1a, high mobility group A1a, (previously HMGI) has been investigated during apoptosis. A change in the degree of phosphorylation of HMGA1a has been observed during apoptosis induced in four leukemic cell lines (HL60, K562, NB4, and U937) by drugs (etoposide, camptothecin) or herpes simplex virus type-1. Both hyper-phosphorylation and de-phosphorylation of HMGA1a have been ascertained by liquid chromatography-mass spectrometry. Hyper-phosphorylation (at least five phosphate groups/HMGA1a molecule) occurs at the early apoptotic stages and is probably related to HMGA1a displacement from DNA and chromatin release from the nuclear scaffold. De-phosphorylation (one phosphate or no phosphate groups/HMGA1a molecule) accompanies the later formation of highly condensed chromatin in the apoptotic bodies. We report for the first time a direct link between the degree of phosphorylation of HMGA1a protein and apoptosis according to a process that involves the entire amount of HMGA1a present in the cells and, consequently, whole chromatin. At the same time we report that variously phosphorylated forms of HMGA1a protein are also mono-methylated
    corecore