15 research outputs found

    Alternative splicing: the pledge, the turn, and the prestige

    Get PDF

    ICP27 Interacts with the RNA Export Factor Aly/REF To Direct Herpes Simplex Virus Type 1 Intronless mRNAs to the TAP Export Pathway

    No full text
    Herpes simplex virus type 1 (HSV-1) protein ICP27 facilitates the export of viral intronless mRNAs. ICP27 shuttles between the nucleus and cytoplasm, which has been shown to require a leucine-rich nuclear export sequence (NES). ICP27 export was reported to be sensitive to the CRM1 inhibitor leptomycin B (LMB) in HSV-1-infected cells but not in Xenopus oocytes, where ICP27 interacts with the export factor Aly/REF to access the TAP export pathway. Here, we show that ICP27 interacts with Aly/REF in HSV-1-infected mammalian cells and that Aly/REF stimulates export of viral intronless RNAs but does not cross-link to these RNAs. During infection, Aly/REF was no longer associated with splicing factor SC35 but moved into structures that colocalized with ICP27, suggesting that ICP27 recruits Aly/REF from spliceosomes to viral intronless RNAs. Further, ICP27 was found to interact in vivo with TAP but not with CRM1. In vitro export assays showed that ICP27 export was not sensitive to LMB but was blocked by a dominant-negative TAP deletion mutant lacking the nucleoporin interaction domain. These data suggest that ICP27 uses the TAP pathway to export viral RNAs. Interestingly, the leucine-rich N-terminal sequence was required for efficient export, even though ICP27 export was LMB insensitive. Thus, this region is required for efficient ICP27 export but does not function as a CRM1-dependent NES

    Low risk for SARS-CoV2 symptomatic infection and early complications in paediatric patients during the ongoing CoVID19 epidemics in Lombardy

    No full text
    134noreservedmixedRovida F.; Cereda D.; Novati S.; Licari A.; Triarico A.; Marseglia G. L.; Bruno R.; Baldanti F.; Mondelli M.; Brunetti E.; Di Matteo A.; Seminari E.; Maiocchi L.; Zuccaro V.; Pagnucco L.; Mariani B.; Ludovisi S.; Lissandrin R.; Parisi A.; Sacchi P.; Patruno S. F. A.; Michelone G.; Gulminetti R.; Zanaboni D.; Maserati R.; Orsolini P.; Vecchia M.; Sciarra M.; Asperges E.; Colaneri M.; Di Filippo A.; Sambo M.; Biscarini S.; Lupi M.; Roda S.; Pieri T. C.; Gallazzi I.; Sachs M.; Valsecchi P.; Perlini S.; Alfano C.; Bonzano M.; Briganti F.; Crescenzi G.; Falchi A. G.; Guarnone R.; Guglielmana B.; Maggi E.; Martino I.; Pettenazza P.; Pioli di Marco S.; Quaglia F.; Sabena A.; Salinaro F.; Speciale F.; Zunino I.; De Lorenzo M.; Secco G.; Dimitry L.; Cappa G.; Maisak I.; Chiodi B.; Sciarrini M.; Barcella B.; Resta F.; Moroni L.; Vezzoni G.; Scattaglia L.; Boscolo E.; Zattera C.; Tassi M. F.; Capozza V.; Vignaroli D.; Bazzini M.; Iotti G.; Mojoli F.; Belliato M.; Perotti L.; Mongodi S.; Tavazzi G.; Marseglia G.; Brambilla I.; Barbarini D.; Bruno A.; Cambieri P.; Campanini G.; Comolli G.; Corbella M.; Daturi R.; Furione M.; Monzillo E.; Paolucci S.; Parea M.; Percivalle E.; Piralla A.; Sarasini A.; Zavattoni M.; Adzasehoun G.; Bellotti L.; Cabano E.; Casali G.; Dossena L.; Frisco G.; Garbagnoli G.; Girello A.; Landini V.; Lucchelli C.; Maliardi V.; Pezzaia S.; Premoli M.; Bonetti A.; Caneva G.; Cassaniti I.; Corcione A.; Di Martino R.; Di Napoli A.; Ferrari A.; Ferrari G.; Fiorina L.; Giardina F.; Mercato A.; Novazzi F.; Ratano G.; Rossi B.; Sciabica I. M.; Tallarita M.; Vecchio Nepita E.; Calvi M.; Tizzoni M.; Nicora C.; Petronella V.; Marena C.; Muzzi A.; Lago P.Rovida, F.; Cereda, D.; Novati, S.; Licari, A.; Triarico, A.; Marseglia, G. L.; Bruno, R.; Baldanti, F.; Mondelli, M.; Brunetti, E.; Di Matteo, A.; Seminari, E.; Maiocchi, L.; Zuccaro, V.; Pagnucco, L.; Mariani, B.; Ludovisi, S.; Lissandrin, R.; Parisi, A.; Sacchi, P.; Patruno, S. F. A.; Michelone, G.; Gulminetti, R.; Zanaboni, D.; Maserati, R.; Orsolini, P.; Vecchia, M.; Sciarra, M.; Asperges, E.; Colaneri, M.; Di Filippo, A.; Sambo, M.; Biscarini, S.; Lupi, M.; Roda, S.; Pieri, T. C.; Gallazzi, I.; Sachs, M.; Valsecchi, P.; Perlini, S.; Alfano, C.; Bonzano, M.; Briganti, F.; Crescenzi, G.; Falchi, A. G.; Guarnone, R.; Guglielmana, B.; Maggi, E.; Martino, I.; Pettenazza, P.; Pioli di Marco, S.; Quaglia, F.; Sabena, A.; Salinaro, F.; Speciale, F.; Zunino, I.; De Lorenzo, M.; Secco, G.; Dimitry, L.; Cappa, G.; Maisak, I.; Chiodi, B.; Sciarrini, M.; Barcella, B.; Resta, F.; Moroni, L.; Vezzoni, G.; Scattaglia, L.; Boscolo, E.; Zattera, C.; Tassi, M. F.; Capozza, V.; Vignaroli, D.; Bazzini, M.; Iotti, G.; Mojoli, F.; Belliato, M.; Perotti, L.; Mongodi, S.; Tavazzi, G.; Marseglia, G.; Brambilla, I.; Barbarini, D.; Bruno, A.; Cambieri, P.; Campanini, G.; Comolli, G.; Corbella, M.; Daturi, R.; Furione, M.; Monzillo, E.; Paolucci, S.; Parea, M.; Percivalle, E.; Piralla, A.; Sarasini, A.; Zavattoni, M.; Adzasehoun, G.; Bellotti, L.; Cabano, E.; Casali, G.; Dossena, L.; Frisco, G.; Garbagnoli, G.; Girello, A.; Landini, V.; Lucchelli, C.; Maliardi, V.; Pezzaia, S.; Premoli, M.; Bonetti, A.; Caneva, G.; Cassaniti, I.; Corcione, A.; Di Martino, R.; Di Napoli, A.; Ferrari, A.; Ferrari, G.; Fiorina, L.; Giardina, F.; Mercato, A.; Novazzi, F.; Ratano, G.; Rossi, B.; Sciabica, I. M.; Tallarita, M.; Vecchio Nepita, E.; Calvi, M.; Tizzoni, M.; Nicora, C.; Petronella, V.; Marena, C.; Muzzi, A.; Lago, P

    Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit

    No full text
    Objectives: To detect possible severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA contamination of inanimate surfaces in areas at high risk of aerosol formation by patients with coronavirus disease 2019 (COVID-19). Methods: Sampling was performed in the emergency unit and the sub-intensive care ward. SARS-CoV-2 RNA was extracted from swabbed surfaces and objects and subjected to real-time RT-PCR targeting RNA-dependent RNA polymerase and E genes. Virus isolation from positive samples was attempted in vitro on Vero E6 cells. Results: Twenty-six samples were collected and only two were positive for low-level SARS-CoV-2 RNA, both collected on the external surface of continuous positive airway pressure helmets. All transport media were inoculated onto susceptible cells, but none induced a cytopathic effect on day 7 of culture. Conclusions: Even though daily contact with inanimate surfaces and patient fomites in contaminated areas may be a medium of infection, our data obtained in real-life conditions suggest that it might be less extensive than hitherto recognized

    EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count

    No full text
    Objectives: The immunologic profile and opportunistic viral DNA increase were monitored in Italian patients with COVID-19 in order to identify markers of disease severity. Methods: A total of 104 patients infected with SARS-CoV-2 were evaluated in the study. Of them, 42/104 (40.4%) were hospitalized in an intensive care unit (ICU) and 62/104(59.6%) in a sub-intensive care unit (SICU). Human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV), Parvovirus B19 and Human Herpesvirus 6 virus reactivations were determined by real-time PCR, and lymphocyte subpopulation counts were determined by flow cytometry. Results: Among opportunistic viruses, only EBV was consistently detected. EBV DNA was observed in 40/42 (95.2%) of the ICU patients and in 51/61 (83.6%) of the SICU patients. Comparing the two groups of patients, the EBV DNA median level among ICU patients was significantly higher than that observed in SICU patients. In parallel, a significant reduction of CD8 T cell and NK count in ICU patients as compared with SICU patients was observed (p < 0.05). In contrast, B cell count was significantly increased in ICU patients (p = 0.0172). Conclusions: A correlation between reduced CD8+ T cells and NK counts, EBV DNA levels and COVID-19 severity was observed. Other opportunistic viral infections were not observed. The relationship between EBV load and COVID-19 severity should be further evaluated in longitudinal studies

    Detection of the SARS-CoV-2 in different biologic specimens from positive patients with COVID-19, in Northern Italy

    No full text
    Coronavirus disease 2019 (COVID-19) diagnosis is based on molecular detection of SARS-CoV-2 in respiratory samples such as nasal swab (NS). However, the evidence that NS in patients with pneumonia was sometimes negative raises the attention to collect other clinical specimens. SARS-CoV-2 was shown in 10.3% rectal swabs (RS), 7.7% plasma, 1% urine, and 0% feces from 143 NS-positive patients. Potential infection by fluids different from respiratory secretion is possible but unlikely
    corecore