9 research outputs found

    Status of FNAL SciBooNE experiment

    Full text link
    SciBooNE is a new experiment at FNAL which will make precision neutrino-nucleus cross section measurements in the one GeV region. These measurements are essential for the future neutrino oscillation experiments. We started data taking in the antineutrino mode on June 8, 2007, and collected 5.19 \times 10^{19} protons on target (POT) before the accelerator shutdown in August. The first data from SciBooNE are reported in this article.Comment: 3 pages, 3 figures. Proceedings of the 10th International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan, September 11-15, 200

    Experimental Status of Neutrino Physics

    Full text link
    After a fascinating phase of discoveries, neutrino physics still has a few mysteries such as the absolute mass scale, the mass hierarchy, the existence of CP violation in the lepton sector and the existence of right-handed neutrinos. It is also entering a phase of precision measurements. This is what motivates the NUFACT 11 conference which prepares the future of long baseline neutrino experiments. In this paper, we report the status of experimental neutrino physics. We focus mainly on absolute mass measurements, oscillation parameters and future plans for oscillation experiments

    Status and perspectives of short baseline studies

    Full text link
    The study of flavor changing neutrinos is a very active field of research. I will discuss the status of ongoing and near term experiments investigating neutrino properties at short distances from the source. In the next few years, the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start looking for signatures of a non-zero value of the mixing angle θ13\theta_{13} with much improved sensitivities. The MiniBooNE experiment is investigating the LSND anomaly by looking at both the νμ→νe\nu_{\mu} \to \nu_{e} and νˉμ→νˉe\bar{\nu}_{\mu} \to \bar{\nu}_{e} appearance channels. Recent results on cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2009), Rome, Italy, 1-5 July 200

    On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments

    Get PDF
    Superbeam experiments can, in principle, achieve impressive sensitivities for CP violation in neutrino oscillations for large θ13\theta_{13}. We study how those sensitivities depend on assumptions about systematical uncertainties. We focus on the second phase of T2K, the so-called T2HK experiment, and we explicitly include a near detector in the analysis. Our main result is that even an idealised near detector cannot remove the dependence on systematical uncertainties completely. Thus additional information is required. We identify certain combinations of uncertainties, which are the key to improve the sensitivity to CP violation, for example the ratio of electron to muon neutrino cross sections and efficiencies. For uncertainties on this ratio larger than 2%, T2HK is systematics dominated. We briefly discuss how our results apply to a possible two far detector configuration, called T2KK. We do not find a significant advantage with respect to the reduction of systematical errors for the measurement of CP violation for this setup.Comment: 30 pages, 10 figures, version accepted for publication in JHE

    Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    Get PDF
    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to match the accepted versio

    Measurement of K(+) production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

    Get PDF
    The SciBooNE Collaboration reports K[superscript +] production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C[subscript 8]H[subscript 8]) target in the SciBooNE detector. The K[superscript +] mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d[superscript 2]σ/dpdΩ=(5.34±0.76)  mb/(GeV/c×sr) for p+Be→K[superscript +]+X at mean K[superscript +] energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K[superscript +] sample. Compared to Monte Carlo predictions using previous higher energy K[superscript +] production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K[superscript +] measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K[superscript +] production cross section from 40% to 14%.Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of ScienceJapan Society for the Promotion of Science (Grant-in-Aid for Scientific Research A 19204026)Japan Society for the Promotion of Science (Young Scientists S 20674004)Japan Society for the Promotion of Science (Young Scientists B 18740145

    Dual baseline search for muon antineutrino disappearance at 0.1 eV² < <{\Delta}m² < 100  eV²

    No full text
    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν̅[subscript μ] at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ν[subscript μ] background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν̅[subscript μ] disappearance that dramatically improves upon prior limits in the Δm[superscript 2]=0.1–100  eV[superscript 2] region
    corecore