9 research outputs found
Status of FNAL SciBooNE experiment
SciBooNE is a new experiment at FNAL which will make precision
neutrino-nucleus cross section measurements in the one GeV region. These
measurements are essential for the future neutrino oscillation experiments. We
started data taking in the antineutrino mode on June 8, 2007, and collected
5.19 \times 10^{19} protons on target (POT) before the accelerator shutdown in
August. The first data from SciBooNE are reported in this article.Comment: 3 pages, 3 figures. Proceedings of the 10th International Conference
on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai,
Japan, September 11-15, 200
Experimental Status of Neutrino Physics
After a fascinating phase of discoveries, neutrino physics still has a few
mysteries such as the absolute mass scale, the mass hierarchy, the existence of
CP violation in the lepton sector and the existence of right-handed neutrinos.
It is also entering a phase of precision measurements. This is what motivates
the NUFACT 11 conference which prepares the future of long baseline neutrino
experiments. In this paper, we report the status of experimental neutrino
physics. We focus mainly on absolute mass measurements, oscillation parameters
and future plans for oscillation experiments
Status and perspectives of short baseline studies
The study of flavor changing neutrinos is a very active field of research. I
will discuss the status of ongoing and near term experiments investigating
neutrino properties at short distances from the source. In the next few years,
the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start
looking for signatures of a non-zero value of the mixing angle
with much improved sensitivities. The MiniBooNE experiment is investigating the
LSND anomaly by looking at both the and
appearance channels. Recent results on
cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th
International Conference on Topics in Astroparticle and Underground Physics
(TAUP 2009), Rome, Italy, 1-5 July 200
On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments
Superbeam experiments can, in principle, achieve impressive sensitivities for
CP violation in neutrino oscillations for large . We study how
those sensitivities depend on assumptions about systematical uncertainties. We
focus on the second phase of T2K, the so-called T2HK experiment, and we
explicitly include a near detector in the analysis. Our main result is that
even an idealised near detector cannot remove the dependence on systematical
uncertainties completely. Thus additional information is required. We identify
certain combinations of uncertainties, which are the key to improve the
sensitivity to CP violation, for example the ratio of electron to muon neutrino
cross sections and efficiencies. For uncertainties on this ratio larger than
2%, T2HK is systematics dominated. We briefly discuss how our results apply to
a possible two far detector configuration, called T2KK. We do not find a
significant advantage with respect to the reduction of systematical errors for
the measurement of CP violation for this setup.Comment: 30 pages, 10 figures, version accepted for publication in JHE
Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam
The SciBooNE Collaboration reports a measurement of inclusive charged current
interactions of muon neutrinos on carbon with an average energy of 0.8 GeV
using the Fermilab Booster Neutrino Beam. We compare our measurement with two
neutrino interaction simulations: NEUT and NUANCE. The charged current
interaction rates (product of flux and cross section) are extracted by fitting
the muon kinematics, with a precision of 6-15% for the energy dependent and 3%
for the energy integrated analyses. We also extract CC inclusive interaction
cross sections from the observed rates, with a precision of 10-30% for the
energy dependent and 8% for the energy integrated analyses. This is the first
measurement of the CC inclusive cross section on carbon around 1 GeV. These
results can be used to convert previous SciBooNE cross section ratio
measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to
match the accepted versio
Measurement of K(+) production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector
The SciBooNE Collaboration reports K[superscript +] production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C[subscript 8]H[subscript 8]) target in the SciBooNE detector. The K[superscript +] mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d[superscript 2]σ/dpdΩ=(5.34±0.76)  mb/(GeV/c×sr) for p+Be→K[superscript +]+X at mean K[superscript +] energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K[superscript +] sample. Compared to Monte Carlo predictions using previous higher energy K[superscript +] production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K[superscript +] measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K[superscript +] production cross section from 40% to 14%.Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of ScienceJapan Society for the Promotion of Science (Grant-in-Aid for Scientific Research A 19204026)Japan Society for the Promotion of Science (Young Scientists S 20674004)Japan Society for the Promotion of Science (Young Scientists B 18740145
Dual baseline search for muon antineutrino disappearance at 0.1 eV² < <{\Delta}m² < 100 eV²
The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν̅[subscript μ] at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ν[subscript μ] background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν̅[subscript μ] disappearance that dramatically improves upon prior limits in the Δm[superscript 2]=0.1–100  eV[superscript 2] region