38 research outputs found
Siderophore production by Bacillus megaterium : effect of growth-phase and cultural conditions
Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 ÎŒmol gâ1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 ÎŒmol gâ1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546â842 ÎŒmol gâ1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.The authors thank Porto University/Totta Bank for their financial support through the project "Microbiological production of chelating agents" (Ref: 180). The authors also thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grants Strategic project-LA23/2013-2014 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE). Manuela D. Machado gratefully acknowledges the postdoctoral (SFRH/BPD/72816/2010) grant from FCT
Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture
Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality
BackgroundThe plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere.MethodsBacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communitiesâ recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems.ResultsRichness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits.ConclusionWhile the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found
Hyperexcitable Substantia Nigra Dopamine Neurons in PINK1- and HtrA2/Omi-Deficient Mice
The electrophysiological properties of substantia nigra pars compacta (SNC) dopamine neurons can influence their susceptibility to degeneration in toxin-based models of Parkinson's disease (PD), suggesting that excitotoxic and/or hypoactive mechanisms may be engaged during the early stages of the disease. It is unclear, however, whether the electrophysiological properties of SNC dopamine neurons are affected by genetic susceptibility to PD. Here we show that deletion of PD-associated genes, PINK1 or HtrA2/Omi, leads to a functional reduction in the activity of small-conductance Ca2+-activated potassium channels. This reduction causes SNC dopamine neurons to fire action potentials in an irregular pattern and enhances burst firing in brain slices and in vivo. In contrast, PINK1 deletion does not affect firing regularity in ventral tegmental area dopamine neurons or substantia nigra pars reticulata GABAergic neurons. These findings suggest that changes in SNC dopamine neuron excitability may play a role in their selective vulnerability in PD
French version validation of the psychotic symptom rating scales (PSYRATS) for outpatients with persistent psychotic symptoms.
ABSTRACT:
BACKGROUND: Most scales that assess the presence and severity of psychotic symptoms often measure a broad range of experiences and behaviours, something that restricts the detailed measurement of specific symptoms such as delusions or hallucinations. The Psychotic Symptom Rating Scales (PSYRATS) is a clinical assessment tool that focuses on the detailed measurement of these core symptoms. The goal of this study was to examine the psychometric properties of the French version of the PSYRATS.
METHODS: A sample of 103 outpatients suffering from schizophrenia or schizoaffective disorders and presenting persistent psychotic symptoms over the previous three months was assessed using the PSYRATS. Seventy-five sample participants were also assessed with the Positive And Negative Syndrome Scale (PANSS).
RESULTS: ICCs were superior to .90 for all items of the PSYRATS. Factor analysis replicated the factorial structure of the original version of the delusions scale. Similar to previous replications, the factor structure of the hallucinations scale was partially replicated. Convergent validity indicated that some specific PSYRATS items do not correlate with the PANSS delusions or hallucinations. The distress items of the PSYRATS are negatively correlated with the grandiosity scale of the PANSS.
CONCLUSIONS: The results of this study are limited by the relatively small sample size as well as the selection of participants with persistent symptoms. The French version of the PSYRATS partially replicates previously published results. Differences in factor structure of the hallucinations scale might be explained by greater variability of its elements. The future development of the scale should take into account the presence of grandiosity in order to better capture details of the psychotic experience
Competition for iron drives phytopathogen control by natural rhizosphere microbiomes
Plant pathogenic bacteria cause high crop and economic losses to human societies1-3. Infections by such pathogens are challenging to control as they often arise through complex interactions between plants, pathogens and the plant microbiome4,5. This natural ecosystem is rarely studied experimentally at the microbiome-wide scale, and consequently we poorly understand how taxonomic and functional microbiome composition and the resulting ecological interactions affect pathogen growth and disease outbreak. Here we combine DNA-based soil microbiome analysis with in vitro and in planta bioassays to show that competition for iron via secreted siderophore molecules is a good predictor of microbe-pathogen interactions and plant protection. We examined the ability of 2150 individual bacterial members of 80 rhizosphere microbiomes, covering all major phylogenetic lineages, to suppress the bacterium Ralstonia solanacearum, a global phytopathogen capable of infecting various crops6,7. We found that secreted siderophores altered microbiome-pathogen interactions from complete pathogen suppression to strong facilitation. Rhizosphere microbiome members with growth-inhibitory siderophores could often suppress the pathogen in vitro, in natural and greenhouse soils, and protect tomato plants from infection. Conversely, rhizosphere microbiome members with growth-promotive siderophores were often inferior in competition and facilitated plant infection by the pathogen. Because siderophores are a chemically diverse group of molecules with each siderophore type relying on a compatible receptor for iron uptake8-12, our results suggest that pathogen-suppressive microbiome members produce siderophores the pathogen cannot use. Altogether, our study establishes a causal mechanistic link between microbiome-level competition for iron and plant protection and opens promising avenues to use siderophore-mediated interactions as a tool for microbiome engineering and pathogen control