3,150 research outputs found

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure

    Can the QCD Effective Charge Be Symmetrical in the Euclidean and the Minkowskian Regions?

    Get PDF
    We study a possible symmetrical behavior of the effective charges defined in the Euclidean and Minkowskian regions and prove that such symmetry is inconsistent with the causality principle.Comment: 5 pages, REVTe

    Magnetic Permeability of Constrained Fermionic Vacuum

    Full text link
    We obtain using Schwinger's proper time approach the Casimir-Euler-Heisenberg effective action of fermion fluctuations for the case of an applied magnetic field. We implement here the compactification of one space dimension into a circle through anti-periodic boundary condition. Aside of higher order non-linear field effects we identify a novel contribution to the vacuum permeability. These contributions are exceedingly small for normal electromagnetism due to the smallness of the electron Compton wavelength compared to the size of the compactified dimension, if we take the latter as the typical size of laboratory cavities, but their presence is thought provoking, also considering the context of strong interactions.Comment: 8 pages, LaTex, 1 postscript figure, Phys. Let. B in press, slight text revisions, references adde

    Casimir Energy for a Spherical Cavity in a Dielectric: Applications to Sonoluminescence

    Get PDF
    In the final few years of his life, Julian Schwinger proposed that the ``dynamical Casimir effect'' might provide the driving force behind the puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion, we have computed the static Casimir energy of a spherical cavity in an otherwise uniform material. As expected the result is divergent; yet a plausible finite answer is extracted, in the leading uniform asymptotic approximation. This result agrees with that found using zeta-function regularization. Numerically, we find far too small an energy to account for the large burst of photons seen in sonoluminescence. If the divergent result is retained, it is of the wrong sign to drive the effect. Dispersion does not resolve this contradiction. In the static approximation, the Fresnel drag term is zero; on the mother hand, electrostriction could be comparable to the Casimir term. It is argued that this adiabatic approximation to the dynamical Casimir effect should be quite accurate.Comment: 23 pages, no figures, REVTe

    Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal

    Full text link
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of photon production due to changes in the properties of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric bubble. This mechanism can be re-phrased in terms of the Casimir effect and has recently been the subject of considerable controversy. The present paper probes Schwinger's suggestion in detail: Using the sudden approximation we calculate Bogolubov coefficients relating the QED vacuum in the presence of the expanded bubble to that in the presence of the collapsed bubble. In this way we derive an estimate for the spectrum and total energy emitted. We verify that in the sudden approximation there is an efficient production of photons, and further that the main contribution to this dynamic Casimir effect comes from a volume term, as per Schwinger's original calculation. However, we also demonstrate that the timescales required to implement Schwinger's original suggestion are not physically relevant to sonoluminescence. Although Schwinger was correct in his assertion that changes in the zero-point energy lead to photon production, nevertheless his original model is not appropriate for sonoluminescence. In other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/9905034) we have developed a variant of Schwinger's model that is compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is now limited to providing a probe of Schwinger's original suggestion for sonoluminescence. For details on our own variant of Schwinger's ideas see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503

    Quantum radiation in external background fields

    Full text link
    A canonical formalism is presented which allows for investigations of quantum radiation induced by localized, smooth disturbances of classical background fields by means of a perturbation theory approach. For massless, non-selfinteracting quantum fields at zero temperature we demonstrate that the low-energy part of the spectrum of created particles exhibits a non-thermal character. Applied to QED in varying dielectrics the response theory approach facilitates to study two distinct processes contributing to the production of photons: the squeezing effect due to space-time varying properties of the medium and of the velocity effect due to its motion. The generalization of this approach to finite temperatures as well as the relation to sonoluminescence is indicated.Comment: 20 page

    Leptogenesis from Spin-Gravity Coupling Following Inflation

    Full text link
    The energy levels of the left and the right handed neutrinos is split in the background of gravitational waves generated during inflation which in presence of lepton number violating interactions gives rise to a net lepton asymmetry at equilibrium. Lepton number violation is achieved by the same dimension five operator which gives rise to neutrino masses after electro-weak symmetry breaking. A net baryon asymmetry of the same magnitude can be generated from this lepton asymmetry by electroweak sphaleron processes.Comment: Journal version (accepted for publication in Phys. Rev. Lett.

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Algebraic structure of the Feynman propagator and a new correspondence for canonical transformations

    Full text link
    We investigate the algebraic structure of the Feynman propagator with a general time-dependent quadratic Hamiltonian system. Using the Lie-algebraic technique we obtain a normal-ordered form of the time-evolution operator, and then the propagator is easily derived by a simple ``Integration Within Ordered Product" (IWOP) technique.It is found that this propagator contains a classical generating function which demonstrates a new correspondence between classical and quantum mechanics

    Hybrid noiseless subsystems for quantum communication over optical fibers

    Full text link
    We derive the general structure of noiseless subsystems for optical radiation contained in a sequence of pulses undergoing collective depolarization in an optical fiber. This result is used to identify optimal ways to implement quantum communication over a collectively depolarizing channel, which in general combine various degrees of freedom, such as polarization and phase, into joint hybrid schemes for protecting quantum coherence.Comment: 5 pages, 1 figur
    corecore