421 research outputs found

    A Plant Distribution Shift: Temperature, Drought or Past Disturbance?

    Get PDF
    Simple models of plant response to warming climates predict vegetation moving to cooler and/or wetter locations: in mountainous regions shifting upslope. However, species-specific responses to climate change are likely to be much more complex. We re-examined a recently reported vegetation shift in the Santa Rosa Mountains, California, to better understand the mechanisms behind the reported shift of a plant distribution upslope. We focused on five elevational zones near the center of the gradient that captured many of the reported shifts and which are dominated by fire-prone chaparral. Using growth rings, we determined that a major assumption of the previous work was wrong: past fire histories differed among elevations. To examine the potential effect that this difference might have on the reported upward shift, we focused on one species, Ceanothus greggii: a shrub that only recruits post-fire from a soil stored seedbank. For five elevations used in the prior study, we calculated time series of past per-capita mortality rates by counting growth rings on live and dead individuals. We tested three alternative hypotheses explaining the past patterns of mortality: 1) mortality increased over time consistent with climate warming, 2) mortality was correlated with drought indices, and 3) mortality peaked 40–50 years post fire at each site, consistent with self-thinning. We found that the sites were different ages since the last fire, and that the reported increase in the mean elevation of C. greggii was due to higher recent mortality at the lower elevations, which were younger sites. The time-series pattern of mortality was best explained by the self-thinning hypothesis and poorly explained by gradual warming or drought. At least for this species, the reported distribution shift appears to be an artifact of disturbance history and is not evidence of a climate warming effect

    Functional cognitive disorder in subjective cognitive decline—A 10‐year follow‐up

    Get PDF
    Objectives: In memory clinics, patients with significant memory complaints without objective neuropsychological findings are common. They are classified as subjective cognitive decline (SCD) and, as a group, face a heightened risk for future dementia. However, the SCD group is heterogeneous and comprises patients suffering from a somatoform condition, namely functional cognitive disorder (FCD). These patients make up at least 11% of memory clinics' attendees. The aim of this long-term follow-up study was to investigate if patients diagnosed with FCD also face a higher risk of developing dementia. Methods: Forty-two Patients were recruited at a university hospital memory clinic. FCD was diagnosed according to the Schmidtke criteria (see Table 1). Ten years later, all were invited again. Participants were interviewed, screened for depression and given neuropsychological tests of verbal memory and information processing speed. Cognitive impairment was defined as performance below 1.5 standard deviations (SD) of the age-related mean. Results: Twenty-eight of 42 patients (67%) took part in this follow-up. The group's mean results in both cognitive measures were stable over time. All individual performances were within 1.5 SD. With 10 patients (24%), brief contact was successful and manifest dementia could be excluded. Four patients (10%) could not be contacted. Conclusions: In retrospect, the Schmidtke criteria for FCD safely identified memory clinic attendees with SCD who did not proceed to Mild Cognitive Impairment or dementia. None of the patients who could be contacted for this follow-up after a decade (90% of baseline participants) showed signs of dementia

    The N(4S) + O2(X3Sigma) O(3P) + NO(X2Pi) reaction: thermal and vibrational relaxation rates for the 2A', 4A' and 2A'' states

    Get PDF
    The kinetics and vibrational relaxation of the N(4S) + O2(X3Sigma-g) O(3P) + NO(X2Pi) reaction is investigated over a wide temperature range based on quasiclassical trajectory simulations on 3-dimensional potential energy surfaces (PESs) for the lowest three electronic states. Reference energies at the multi reference configuration interaction level are represented as a reproducing kernel and the topology of the PESs is rationalized by analyzing the CASSCF wavefunction of the relevant states. The forward rate matches one measurement at 1575 K and is somewhat lower than the high-temperature measurement at 2880 K whereas for the reverse rate the computations are in good agreement for temperatures between 3000 and 4100 K. The temperature-dependent equilibrium rates are consistent with results from JANAF and CEA results. Vibrational relaxation rates for O + NO(nu = 1) O + NO(nu = 0) are consistent with a wide range of experiments. This process is dominated by the dynamics on the 2A' and 4A' surfaces which both contribute similarly up to temperatures T 3000 K, and it is found that vibrationally relaxing and non-relaxing trajectories probe different parts of the potential energy surface. The total cross section depending on the final vibrational state monotonically decreases which is consistent with early experiments and previous simulations but at variance with other recent experiments which reported an oscillatory cross section

    Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions

    Get PDF
    Identifying a concerted or stepwise mechanism in Diels-Alder reactions is experimentally challenging. Here the authors demonstrate the coexistence of both mechanisms in the reaction of 2,3-dibromobuta-1,3-diene with propene ions, using a conformationally controlled molecular beam reacting with trapped ions and ab initio computations Diels-Alder cycloadditions are efficient routes for the synthesis of cyclic organic compounds. There has been a long-standing discussion whether these reactions proceed via stepwise or concerted mechanisms. Here, we adopt an experimental approach to explore the mechanism of the model polar cycloaddition of 2,3-dibromo-1,3-butadiene with propene ions by probing its conformational specificities in the entrance channel under single-collision conditions in the gas phase. Combining a conformationally controlled molecular beam with trapped ions, we find that both conformers of the diene, gauche and s-trans, are reactive with capture-limited reaction rates. Aided by quantum-chemical and quantum-capture calculations, this finding is rationalised by a simultaneous competition of concerted and stepwise reaction pathways, revealing an interesting mechanistic borderline case

    Genetic component of flammability variation in a Mediterranean shrub

    Get PDF
    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non‐resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability‐enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire‐prone ecosystems

    Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions

    Get PDF
    Recent advances in experimental methodology enabled studies of the quantum-state- and conformational dependence of chemical reactions under precisely controlled conditions in the gas phase. Here, we generated samples of selected gauche and s-trans 2,3-dibromobutadiene (DBB) by electrostatic deflection in a molecular beam and studied their reaction with Coulomb crystals of laser-cooled Ca + ions in an ion trap. The rate coefficients for the total reaction were found to strongly depend on both the conformation of DBB and the electronic state of Ca + . In the (4p) 2 P 1/2 and (3d) 2 D 3/2 excited states of Ca + , the reaction is capture-limited and faster for the gauche conformer due to long-range ion-dipole interactions. In the (4s) 2 S 1/2 ground state of Ca + , the reaction rate for s-trans DBB still conforms with the capture limit, while that for gauche DBB is strongly suppressed. The experimental observations were analysed with the help of adiabatic capture theory, ab initio calculations and reactive molecular dynamics simulations on a machine-learned full-dimensional potential energy surface of the system. The theory yields near-quantitative agreement for s-trans -DBB, but overestimates the reactivity of the gauche -conformer compared to the experiment. The present study points to the important role of molecular geometry even in strongly reactive exothermic systems and illustrates striking differences in the reactivity of individual conformers in gas-phase ion-molecule reactions

    The National Fire and Fire Surrogate Study: Effects of Fuel Reduction Methods on Forest Vegetation Structure and Fuels

    Get PDF
    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed. re, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface. re regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an information-theoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wild. re damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed. re treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment
    corecore