262 research outputs found

    Spin wave excitations: The main source of the temperature dependence of Interlayer exchange coupling in nanostructures

    Full text link
    Quantum mechanical calculations based on an extended Heisenberg model are compared with ferromagnetic resonance (FMR) experiments on prototype trilayer systems Ni_7/Cu_n/Co_2/Cu(001) in order to determine and separate for the first time quantitatively the sources of the temperature dependence of interlayer exchange coupling. Magnon excitations are responsible for about 75% of the reduction of the coupling strength from zero to room temperature. The remaining 25% are due to temperature effects in the effective quantum well and the spacer/magnet interfaces.Comment: accepted for publication in PR

    X-ray absorption spectroscopy on layered cobaltates Na_xCoO_2

    Full text link
    Measurements of polarization and temperature dependent soft x-ray absorption have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co^{3+} and Co^{4+} sites. With the help of a cluster calculation we are able to interpret the Co L_{23}-edge absorption spectrum and find a doping dependent energy splitting between the t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.Comment: 7 pages, 8 figure

    Zn(O, S) layers for chalcoyprite solar cells sputtered from a single target

    Get PDF
    A simplified Cu(In, Ga)(S, Se)2/Zn(O, S)/ZnO:Al stack for chalcopyrite thin- film solar cells is proposed. In this stack the Zn(O, S) layer combines the roles of the traditional CdS buffer and undoped ZnO layers. It will be shown that Zn(O, S) films can be sputtered in argon atmosphere from a single mixed target without substrate heating. The photovoltaic performance of the simplified stack matches that of the conventional approach. Replacing the ZnO target with a ZnO/ZnS target may therefore be sufficient to omit the CdS buffer layer and avoid the associated complexity, safety and recycling issues, and to lower production cost

    Ferromagnetism in the Periodic Anderson Model - a Modified Alloy Analogy

    Full text link
    We introduce a new aproximation scheme for the periodic Anderson model (PAM). The modified alloy approximation represents an optimum alloy approximation for the strong coupling limit, which can be solved within the CPA-formalism. Zero-temperature and finite-temperature phase diagrams are presented for the PAM in the intermediate-valence regime. The diversity of magnetic properties accessible by variation of the system parameters can be studied by means of quasiparticle densities of states: The conduction band couples either ferro- or antiferromagneticaly to the f-levels. A finite hybridization is a necessary precondition for ferromagnetism. However, too strong hybridization generally suppresses ferromagnetism, but can for certain system parameters also lead to a semi-metallic state with unusual magnetic properties. By comparing with the spectral density approximation, the influence of quasiparticle damping can be examined.Comment: 20 pages, 13 figure

    A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

    Get PDF
    A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behaviour, already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur

    Nematic suspension of a microporous layered silicate obtained by forceless spontaneous delamination via repulsive osmotic swelling for casting high-barrier all-inorganic films

    Get PDF
    Exploiting the full potential of layered materials for a broad range of applications requires delamination into functional nanosheets. Delamination via repulsive osmotic swelling is driven by thermodynamics and represents the most gentle route to obtain nematic liquid crystals consisting exclusively of single-layer nanosheets. This mechanism was, however, long limited to very few compounds, including 2:1-type clay minerals, layered titanates, or niobates. Despite the great potential of zeolites and their microporous layered counterparts, nanosheet production is challenging and troublesome, and published procedures implied the use of some shearing forces. Here, we present a scalable, eco-friendly, and utter delamination of the microporous layered silicate ilerite into single-layer nanosheets that extends repulsive delamination to the class of layered zeolites. As the sheet diameter is preserved, nematic suspensions with cofacial nanosheets of ≈9000 aspect ratio are obtained that can be cast into oriented films, e.g., for barrier applications

    Stabilization of d-Band Ferromagnetism by Hybridization with Uncorrelated Bands

    Full text link
    We investigate the influence of s-d or p-d hybridization to d-band ferromagnetism to estimate the importance of hybridization for the magnetic properties of transition metals. To focus our attention to the interplay between hybridization and correlation we investigate a simple model system consisting of two non-degenerated hybridized bands, one strongly correlated, the other one quasi-free. To solve this extended Hubbard model, we apply simple approximations, namely SDA and MAA, that, concerning ferromagnetism in the single-band model, are known to give qualitatively satisfactory results. This approach allows us to discuss the underlying mechanism, by which d-band ferromagnetism is influenced by the hybridization on the basis of analytical expressions. The latter clearly display the order and the functional dependencies of the important effects. It is found, that spin-dependent inter-band particle fluctuations cause a spin-dependent band shift and a spin-dependent band broadening of the Hubbard bands. The shift stabilizes, the broadening tends to destabilize ferromagnetism. Stabilization requires relatively high band distances and small hybridization matrix elements. Super-exchange and RKKY coupling are of minor importance.Comment: 9 pages, 7 figures, accepted for PR

    Single- and double-beta decay Fermi-transitions in an exactly solvable model

    Full text link
    An exactly solvable model suitable for the description of single and double-beta decay processes of the Fermi-type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons in a single j-shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the hamiltonian in the quasiparticle basis (qp) and with the results of both the standard quasiparticle random phase approximation (QRPA) and the renormalized one (RQRPA). The role of the scattering term of the quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the collapse of the QRPA. The RQRPA and the qp solutions do not include this zero-energy eigenvalue in their spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to Physcal Review

    Neutrinoless Double Beta Decay in Gauge Theories

    Full text link
    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. Its observation will severely constrain the existing models and signal that the neutrinos are massive Majorana particles. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the neutrino mass, the admixture of right handed currents etc, it may occur due to the R-parity violating supersymmetric (SUSY) interactions. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about 100 MeV. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25 per cent, almost regardless of the nuclear model. In the case of heavy neutrinos the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 and the experimental limits on the life times we have extracted new stringent limits on the average neutrino mass and on the R-parity violating coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
    corecore