270 research outputs found

    Spin-independent elastic WIMP scattering and the DAMA annual modulation signal

    Get PDF
    We discuss the interpretation of the annual modulation signal seen in the DAMA experiment in terms of spin-independent elastic WIMP scattering. Taking into account channeling in the crystal as well as the spectral signature of the modulation signal we find that the low-mass WIMP region consistent with DAMA data is confined to WIMP masses close to mχ12m_\chi \simeq 12 GeV, in disagreement with the constraints from CDMS and XENON. We conclude that even if channeling is taken into account this interpretation of the DAMA modulation signal is disfavoured. There are no overlap regions in the parameter space at 90% CL and a consistency test gives the probability of 1.2×1051.2\times 10^{-5}. We study the robustness of this result with respect to variations of the WIMP velocity distribution in our galaxy, by changing various parameters of the distribution function, and by using the results of a realistic N-body dark matter simulation. We find that only by making rather extreme assumptions regarding halo properties can we obtain agreement between DAMA and CDMS/XENON.Comment: 21 pages, 12 figures, matches version accepted in JCA

    nu_e Disappearance in MiniBooNE

    Full text link
    The anomalous excess of low-energy nu_e events measured in the MiniBooNE experiment is explained through a renormalization of the absolute neutrino flux and a simultaneous disappearance of the nu_e's in the beam, which is compatible with that indicated by the results of Gallium radioactive source experiments. We present the results of the fit of MiniBooNE data (P(nu_e->nu_e) = 0.64 +0.08 -0.07) and the combined fit of MiniBooNE data and the nu_e disappearance measured in the Gallium radioactive source experiments, which gives P(nu_e->nu_e) = 0.82 +- 0.04. We show that our interpretation of the data is also compatible with an old indication in favor of nu_e disappearance found from the analysis of the results of beam-dump experiments, leading to P(nu_e->nu_e) = 0.80 +0.03 -0.04.Comment: 17 pages. Final version published in Phys. Rev. D 77, 093002 (2008

    Fitting Neutrino Physics with a U(1)_R Lepton Number

    Full text link
    We study neutrino physics in the context of a supersymmetric model where a continuous R-symmetry is identified with the total Lepton Number and one sneutrino can thus play the role of the down type Higgs. We show that R-breaking effects communicated to the visible sector by Anomaly Mediation can reproduce neutrino masses and mixing solely via radiative contributions, without requiring any additional degree of freedom. In particular, a relatively large reactor angle (as recently observed by the Daya Bay collaboration) can be accommodated in ample regions of the parameter space. On the contrary, if the R-breaking is communicated to the visible sector by gravitational effects at the Planck scale, additional particles are necessary to accommodate neutrino data.Comment: 19 pages, 3 figures; v2: references added, constraints updated, overall conclusions unchange

    Solar neutrino-electron scattering as background limitation for double beta decay

    Full text link
    The background on double beta decay searches due to elastic electron scattering of solar neutrinos of all double beta emitters with Q-value larger than 2 MeV is calculated, taking into account survival probability and flux uncertainties of solar neutrinos. This work determines the background level to be [1-2]E-7 counts /keV/kg/yr, depending on the precise Q-value of the double beta emitter. It is also shown that the background level increases dramatically if going to lower Q-values. Furthermore, studies are done for various detector systems under consideration for next generation experiments. It was found that experiments based on loaded liquid scintillator have to expect a higher background. Within the given nuclear matrix element uncertainties any approach exploring the normal hierarchy has to face this irreducible background, which is a limitation on the minimal achievable background for purely calorimetric approaches. Large scale liquid scintillator experiments might encounter this problem already while exploring the inverted hierarchy. Potential caveats by using more sophisticated experimental setups are also discussed

    Cosmic rays from Leptonic Dark Matter

    Full text link
    If dark matter possesses a lepton number, it is natural to expect the dark-matter annihilation and/or decay mainly produces the standard model leptons, while negligible amount of the antiproton is produced. To illustrate such a simple idea, we consider a scenario that a right-handed sneutrino dark matter decays into the standard model particles through tiny R-parity violating interactions. Interestingly enough, charged leptons as well as neutrinos are directly produced, and they can lead to a sharp peak in the predicted positron fraction. Moreover, the decay of the right-handed sneutrino also generates diffuse continuum gamma rays which may account for the excess observed by EGRET, while the primary antiproton flux can be suppressed. Those predictions on the cosmic-ray fluxes of the positrons, gamma rays and antiprotons will be tested by the PAMELA and FGST observatories.Comment: 21 pages, 4 figures, 2 tables, updated plots including PAMELA dat

    Ultraviolet Completion of Flavour Models

    Full text link
    Effective Flavour Models do not address questions related to the nature of the fundamental renormalisable theory at high energies. We study the ultraviolet completion of Flavour Models, which in general has the advantage of improving the predictivity of the effective models. In order to illustrate the important features we provide minimal completions for two known A4 models. We discuss the phenomenological implications of the explicit completions, such as lepton flavour violating contributions that arise through the exchange of messenger fields.Comment: 18 pages, 8 figure

    On the Effective Action of N=1 Supersymmetric Yang-Mills Theory

    Get PDF
    We propose a generalization of the Veneziano-Yankielowicz effective low-energy action for N=1 SUSY Yang-Mills theory which includes composite operators interpolating pure gluonic bound states. The chiral supermultiplet of anomalies is embedded in a larger three-form multiplet and an extra term in the effective action is introduced. The mass spectrum and mixing of the lowest-spin bound states are studied within the effective Lagrangian approach. The physical mass eigenstates form two multiplets, each containing a scalar, pseudoscalar and Weyl fermion. The multiplet containing the states which are most closely related to glueballs is the lighter one.Comment: 20 pages, LaTex file, some references and footnotes are adde

    Leptogenesis in the presence of exact flavor symmetries

    Full text link
    In models with flavor symmetries in the leptonic sector leptogenesis can take place in a very different way compared to the standard leptogenesis scenario. We study the generation of a BLB-L asymmetry in these kind of models in the flavor symmetric phase pointing out that successful leptogenesis requires (i) the right-handed neutrinos to lie in different representations of the flavor group; (ii) the flavons to be lighter at least that one of the right-handed neutrino representations. When these conditions are satisfied leptogenesis proceeds due to new contributions to the CP violating asymmetry and -depending on the specific model- in several stages. We demonstrate the validity of these arguments by studying in detail the generation of the BLB-L asymmetry in a scenario of a concrete A4A_4 flavor model realization.Comment: 25 pages, 7 figures; version 2: A few clarifications added. Version matches publication in JHE

    Tri-Bimaximal Mixing from Twisted Friedberg-Lee Symmetry

    Get PDF
    We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μτ\mu - \tau symmetry, and call that the twisted FL symmetry.Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing.In the first scheme, we suggest the semi-uniform translation of the FL symmetry.The second one is based on the S3S_3 permutation family symmetry.The breaking terms, which are twisted FL symmetric, are introduced.Some viable models in each scheme are also presented.Comment: 14 pages, no figure. v2: 16 pages, modified some sentences, appendix added, references added. v3: 14 pages, composition simplified, accepted version in EPJ
    corecore