172 research outputs found

    Eluate derived by extracorporal antibody-based immunoadsorption elevates the cytosolic Ca2+ concentration in podocytes via B-2 kinin receptors

    Get PDF
    Background/Aim: Patients with idiopathic focal segmental glomerulosclerosis (FSGS) often develop a recurrence of the disease after kidney transplantation. In a number of FSGS patients, plasmapheresis and immunoadsorption procedures have been shown to transiently reduce proteinuria and are thought to do this by eliminating a circulating factor. Direct cellular effects of eluates from immunoadsorption procedures on podocytes, the primary target of injury in FSGS, have not yet been reported. Methods: Eluates were derived from antibody-based immunoadsorption of a patient suffering from primary FSGS, a patient with systemic lupus erythematosus, and a healthy volunteer. The cytosolic free Ca2+ concentration ({[}Ca2+](i)) of differentiated podocytes was measured by single-cell fura-2 microfluorescence measurements. Free and total immunoreactive kinin levels were measured by radioimmunoassay. Results: FSGS eluates increased the {[}Ca2+](i) levels concentration dependently (EC50 0.14 mg/ml; n = 3-19). 1 mg/ml eluate increased the {[}Ca2+](i) values reversibly from 82 +/- 12 to 1,462 +/- 370 nmol/l, and then they returned back to 100 16 nmol/l (n = 19). The eluate-induced increase of {[}Ca2+](i) consisted of an initial Ca2+ peak followed by a Ca2+ plateau which depended on the extracellular Ca2+ concentration. The eluate-induced increase of {[}Ca2+](i) was inhibited by the specific B-2 kinin receptor antagonist Hoe 140 in a concentration-dependent manner (IC50 2.47 nmol/l). In addition, prior repetitive application of bradykinin desensitized the effect of eluate on {[}Ca2+](i). A colonic epithelial cell line not reacting to bradykinin did not respond to eluate either (n = 6). Similar to FSGS eluates, the eluate preparations of both the systemic lupus patient and the healthy volunteer led to a biphasic, concentration-dependent {[}Ca2+](i) increase in poclocytes which again was inhibited by Hoe 140. Free kinins were detected in all eluate preparations. Conclusion: The procedure of antibody-based immunoadsorption leads to kinin in the eluate which elevates the {[}Ca2+](i) level of podocytes via B-2 kinin receptors. Copyright (C) 2002 S. Karger AG, Basel

    A inovação aberta no processo de internacionalização de empresas: estudo de caso da Brasil Foods

    Get PDF
    TCC (graduação) - Universidade Federal de Santa Catarina. Centro Sócio-Econômico. Relações Internacionais.A presente monografia tem como objetivo o estudo do papel da inovação aberta no processo de internacionalização de empresas, a partir da revisão teórica dos conceitos na literatura e de um estudo de caso real de uma empresa brasileira de grande porte: a Brasil Foods. A presente pesquisa possui caráter de pesquisa exploratória. Para desenvolver o objetivo principal, o trabalho apresenta três objetivos específicos, que são: primeiro apresentar o conceito de inovação, seus graus de inserção e destacar a sua relevância no setor empresarial; segundo apresentar o conceito de inovação aberta e de inovação fechada e esclarecer a importância da difusão de informações; e, terceiro, apresentar os aspectos históricos da internacionalização de empresas, introduzindo duas teorias do processo: Modelo de Uppsala e Perspectiva de Networks. Assim, pode-se exibir, portanto, um modelo conceitual às relações entre as atividades de inovação aberta e a internacionalização de empresas em redes, levandose em consideração que a gestão de inovação nas empresas, atualmente, transcende a visão de inovação tecnológica, e, as redes internacionais ganham cada vez mais relevância como vantagem competitiva nas empresas ao atuar em mercados exteriores. Como resultado, concluiu-se que as estratégias de internacionalização de empresas em redes e as estratégias de inovação aberta, quando empregadas juntas, aumentam a velocidade de aprendizagem organizacional da Brasil Foods, acelerando os processos de internacionalização, confirmando que a inovação aberta estimula e intensifica a internacionalização de empresas que trabalham em redes

    Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts

    Get PDF
    The protein serine/threonine kinase Akt, also known as protein kinase B (PKB), is arguably the most important signalling nexus in the cell. Akt integrates a plethora of extracellular signals to generate diverse outcomes, including proliferation, motility, growth, glucose homeostasis, survival, and cell death. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is the second most frequently mutated pathway in cancer, after p53, and mutations in components of this pathway are found in around 70% of breast cancers. Thus, understanding how Akt relays input signals to downstream effectors is critically important for the design of therapeutic strategies to combat breast cancer. In this review, we will discuss the various signals upstream of Akt that impact on its activity, how Akt integrates these signals and modulates the activity of downstream targets to control mammary gland development, and how mutations in components of the pathway result in breast cancer

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Lactation Defect in a Widely Used MMTV-Cre Transgenic Line of Mice

    Get PDF
    MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines.To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development.The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the controls did not include mice expressing only Cre recombinase

    Suppression of Radiation-Induced Salivary Gland Dysfunction by IGF-1

    Get PDF
    Radiation is a primary or secondary therapeutic modality for treatment of head and neck cancer. A common side effect of irradiation to the neck and neck region is xerostomia caused by salivary gland dysfunction. Approximately 40,000 new cases of xerostomia result from radiation treatment in the United States each year. The ensuing salivary gland hypofunction results in significant morbidity and diminishes the effectiveness of anti-cancer therapies as well as the quality of life for these patients. Previous studies in a rat model have shown no correlation between induction of apoptosis in the salivary gland and either the immediate or chronic decrease in salivary function following gamma-radiation treatment.A significant level of apoptosis can be detected in the salivary glands of FVB mice following gamma-radiation treatment of the head and neck and this apoptosis is suppressed in transgenic mice expressing an activated mutant of Akt (myr-Akt1). Importantly, this suppression of apoptosis in myr-Akt1 mice preserves salivary function, as measured by saliva output, three and thirty days after gamma-radiation treatment. In order to translate these studies into a preclinal model we found that intravenous injection of IGF1 stimulated activation of endogenous Akt in the salivary glands in vivo. A single injection of IGF1 prior to exposure to gamma-radiation diminishes salivary acinar cell apoptosis and completely preserves salivary gland function three and thirty days following irradiation.These studies suggest that apoptosis of salivary acinar cells underlies salivary gland hypofunction occurring secondary to radiation of the head and neck region. Targeted delivery of IGF1 to the salivary gland of patients receiving head and neck irradiation may be useful in reducing or eliminating xerostomia and restoring quality of life to these patients

    Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup

    Get PDF
    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk
    corecore