1,482 research outputs found

    A Three-Compartment Model Describing Temperature Changes in Tethered Flying Blowflies

    Get PDF
    A three-compartment model is presented that describes temperature measurements of tethered flying blowflies, obtained by thermal imaging. During rest, the body temperature is approximately equal to the ambient temperature. At the start of flight, the thorax temperature increases exponentially with a time constant of 30 s; in steady flight, a temperature of approximately 30-degrees-C is reached (ambient temperature approximately 25-degrees-C). After flight, the temperature of the thorax decreases exponentially with a time constant of 50 s. Fitting the time courses of the three body compartments, i.e. head, thorax and abdomen, with the model allows the thermal parameters to be calculated. The metabolic heat produced by a blowfly during tethered flight is estimated to be approximately 23 mW.</p

    Bacterial Biofilms in Drinking Water Systems: Protecting Patient Health at the Alberta Children’s Hospital

    Get PDF
    When we hear of bacterial contaminated drinking water, we generally think of microscopic organisms swimming freely throughout the system. Although bacteria are found in this free living form, or planktonically, the majority of microorganisms in natural environments are in fact found growing on a surface. These surface adhered bacteria are called biofilms and can be found anywhere, ranging from implanted medical devices to drinking water pipes. Drinking water system operators use the multiple barrier approach to ensure the microbiological safety of the water. The approach includes primary treatment of the source water with chlorine or UV light; secondary chlorine treatment throughout distribution systems; and routine testing for indicator organisms, such as Escherichia coli. Thus, the presence of indicator organisms signifies that there has been a failure in the treatment process or a contamination in the water system. Regardless of chemical or irradiation treatment, normal flora biofilms continue to grow in these systems. It is theorized that these resident flora biofilms may incorporate and shield pathogenic organisms from chlorine disinfection. The Alberta Children’s Hospital (ACH) water system has a unique design, engineered to reduce bacterial contamination and biofilm growth. This project, done in collaboration with Alberta Health Services and the ACH, aims to evaluate bacterial survival after exposure to low levels of chlorine. It is hypothesized that the chlorine levels maintained in our water systems for secondary treatment may be insufficient to disinfect biofilm growth. Eight isolates were obtained directly from chlorinated water systems, including the ACH. These isolates were tested both planktonically and as biofilms, grown using the Calgary Biofilm Device, under a range of chlorine concentrations. Minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) assays have shown that biofilms can be 2-20 times more resistant to chlorine disinfection when compared to their more vulnerable planktonic counterparts

    The Dependence of the Soft X-ray Properties of LMXBs on the Metallicity of Their Environment

    Full text link
    We determine the X-ray spectral properties of a sample of low-mass X-ray binaries (LMXBs) which reside in globular clusters of M31, as well as five LMXBs in Galactic globular clusters and in the Large Magellanic Cloud using the ROSAT PSPC. We find a trend in the X-ray properties of the LMXBs as a function of globular cluster metallicity. The spectra of LMXBs become progressively softer as the metallicity of its environment increases. The one M31 globular cluster LMXB in our sample which has a metallicity greater than solar has spectral properties similar to those of LMXBs in the bulge of M31, but markedly different from those which reside in low metallicity globular clusters, both in M31 and the Galaxy. The spectral properties of this high metallicity LMXB is also similar to those of X-ray faint early-type galaxies. This lends support to the claim that a majority of the X-ray emission from these X-ray faint early-type galaxies results from LMXBs and not hot gas, as is the case in their X-ray bright counterparts.Comment: 5 pages, 2 embedded Postscript figures, uses emulateapj.sty, Astrophysical Journal Letters, in pres

    Verteerbaarheid en voederwaarde van eiwitrijke grondstoffen bij biologische biggen

    Get PDF
    Op Varkensproefbedrijf Raalte is onderzocht wat de nutriëntensamenstelling, verteerbaarheid en EW is van raapzaadeiwit concentraat, erwteneiwit concentraat, tarweglutenmeel en veldboneneiwitconcentraat bij biologisch gehouden gespeende biggen. De resultaten van het onderzoek zijn in dit rapport beschreven

    A Reanalysis of theUltraviolet Extinction from Interstellar Dust in the Large Magellanic Cloud

    Get PDF
    We have reanalyzed the Large Magellanic Cloud's (LMC) ultraviolet (UV) extinction using data from the IUE final archive. Our new analysis takes advantage of the improved signal--to--noise of the IUE NEWSIPS reduction, the exclusion of stars with very low reddening, the careful selection of well matched comparison stars, and an analysis of the effects of Galactic foreground dust. Differences between the average extinction curves of the 30 Dor region and the rest of the LMC are reduced compared to previous studies. We find that there is a group of stars with very weak 2175 Ang. bumps that lie in or near the region occupied by the supergiant shell, LMC 2, on the southeast side of 30 Dor. The average extinction curves inside and outside LMC 2 show a very significant difference in 2175 Ang. bump strength, but their far--UV extinctions are similar. While it is unclear whether or not the extinction outside the LMC 2 region can be fit with the relation of Cardelli, Clayton and Mathis (CCM), sightlines near LMC 2 cannot be fit with CCM due to their weak 2175 Ang. bumps. While the extinction properties seen in the LMC lie within the range of properties seen in the Galaxy, the correlations of UV extinction properties with environment seen in the Galaxy do not appear to hold in the LMC.Comment: 29 pages, 10 figures, to be published in Ap

    Towards interoperability of entity-based and event-based IoT platforms: The case of NGSI and EPCIS standards

    Get PDF
    With the advancement of IoT devices and thanks to the unprecedented visibility and transparency they provide, diverse IoT-based applications are being developed. With the proliferation of IoT, both the amount and type of data items captured have increased dramatically. The data generated by IoT devices reside in different organizations and systems, and a major barrier to utilizing the data is the lack of interoperability among the standards used to capture the data. To reduce this barrier, two major standards have emerged: the Global Standards One (GS1) Electronic Product Code Information Service (EPCIS) and the FIWARE Next Generation Services Interface (NGSI). However, the two standards differ not only in the data encoding but also in the underlying philosophy of representing IoT data; namely, EPCIS is event-based, and NGSI is entity-based. Interoperability between FIWARE and EPCIS is essential for system integration. This paper presents OLIOT Mediation Gateway, now one of the incubated generic enablers offered by the FIWARE Foundation, that realizes the required interoperability between NGSI and EPCIS systems. It also demonstrates the applicability and feasibility of the Gateway by applying it to a real-life case study of integrating transparency systems used in a meat supply chain

    Detection of Cold Atomic Clouds in the Magellanic Bridge

    Get PDF
    We report a detection of cold atomic hydrogen in the Magellanic Bridge using 21-cm absorption spectroscopy toward the radio source B0312-770. With a column density of N_HI=1.2E20 cm^-2, a maximum absorption optical depth of tau=0.10 and a maximum 21-cm emission brightness temperature of 1.4 K, this line of sight yields a spin temperature, T_s, between 20 K and 40 K. H I 21-cm absorption and emission spectroscopy toward 7 other low column density sightlines on the periphery of the LMC and SMC reveal absorption toward one additional background radio source behind the SMC with tau=0.03. The data have typical sensitivities of sigma_tau=0.005 to 0.070 in absorption and sigma_{T_B}=0.03 K in emission. These data demonstrate the presence of a cold atomic phase which is probably accompanied by molecular condensations in the tenuous interstellar medium of the Bridge region. Young OB stars observed in the Magellanic Bridge could form "in situ" from these cold condensations rather than migrate from regions of active star formation in the main body of the SMC. The existence of cold condensations and star formation in the Magellanic Bridge might be understood as a small scale version of the mechanism that produces star formation in the tidal tails of interacting galaxies.Comment: 25 pages, uses AASTeX and psfig; Accepted for Publication in the Astronomical Journa

    Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models

    Get PDF
    Motivated by new sounding-rocket wide-field polarimetric images of the Large Magellanic Cloud, we have used a three-dimensional Monte Carlo radiation transfer code to investigate the escape of near-ultraviolet photons from young stellar associations embedded within a disk of dusty material (i.e. a galaxy). As photons propagate through the disk, they may be scattered or absorbed by dust. Scattered photons are polarized and tracked until they escape to be observed; absorbed photons heat the dust, which radiates isotropically in the far-infrared, where the galaxy is optically thin. The code produces four output images: near- UV and far-IR flux, and near-UV images in the linear Stokes parameters Q and U. From these images we construct simulated UV polarization maps of the LMC. We use these maps to place constraints on the star + dust geometry of the LMC and the optical properties of its dust grains. By tuning the model input parameters to produce maps that match the observed polarization maps, we derive information about the inclination of the LMC disk to the plane of the sky, and about the scattering phase function g. We compute a grid of models with i = 28 deg., 36 deg., and 45 deg., and g = 0.64, 0.70, 0.77, 0.83, and 0.90. The model which best reproduces the observed polarization maps has i = 36 +2/-5 degrees and g ~0.7. Because of the low signal-to-noise in the data, we cannot place firm constraints on the value of g. The highly inclined models do not match the observed centro-symmetric polarization patterns around bright OB associations, or the distribution of polarization values. Our models approximately reproduce the observed ultraviolet photopolarimetry of the western side of the LMC; however, the output images depend on many input parameters and are nonunique.Comment: Accepted to AJ. 20 pages, 7 figure

    Low-Mass Pre-Main Sequence Stars in the Large Magellanic Cloud - III: Accretion Rates from HST-WFPC2 Observations

    Full text link
    We have measured the present accretion rate of roughly 800 low-mass (~1-1.4 Mo) pre-Main Sequence stars in the field of Supernova 1987A in the Large Magellanic Cloud (LMC, Z~0.3 Zo). It is the first time that this fundamental parameter for star formation is determined for low-mass stars outside our Galaxy. The Balmer continuum emission used to derive the accretion rate positively correlates with the Halpha excess. Both these phenomena are believed to originate from accretion from a circumstellar disk so that their simultaneous detection provides an important confirmation of the pre-Main Sequence nature of the Halpha and UV excess objects, which are likely to be the LMC equivalent of Galactic Classical TTauri stars. The stars with statistically significant excesses are measured to have accretion rates larger than 1.5x10^{-8}Mo/yr at an age of 12-16 Myrs. For comparison, the time scale for disk dissipation observed in the Galaxy is of the order of 6 Myrs. Moreover, the oldest Classical TTauri star known in the Milky Way (TW Hydrae, with 10 Myrs of age) has a measured accretion rate of only 5x10^{-10} Mo/yr, ie 30 times less than what we measure for stars at a comparable age in the LMC. Our findings indicate that metallicity plays a major role in regulating the formation of low-mass stars.Comment: Accepted for publication in the Astrophysical Journal (10 June 2004), 28 pages, 9 figures. Typo corrected in the abstract on 21 February 200
    • …
    corecore